Multi-modal Motion Planning in Non-expansive Spaces

  • Kris Hauser
  • Jean-Claude Latombe
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 57)

Abstract

The motion planning problems encountered in manipulation and legged locomotion have a distinctive multi-modal structure, where the space of feasible configurations consists of overlapping submanifolds of different dimensionalities. Such a feasible space does not possess expansiveness, a property that characterizes whether planning queries can be solved with traditional sample-based planners.We present a new sample-based multi-modal planning algorithm and analyze its completeness properties. In particular, it converges quickly when each mode is expansive relative to the submanifold in which it is embedded. We also present a variant that has the same convergence properties, but works better for problems with a large number of modes by considering subsets that are likely to contain a solution path. These algorithms are demonstrated in a legged locomotion planner.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alami, R., Laumond, J.-P., Siméon, T.: Two manipulation planning algorithms. In: Goldberg, K., Halperin, D., Latombe, J.-C., Wilson, R. (eds.) Alg. Found. Rob., pp. 109–125. A K Peters, Wellesley (1995)Google Scholar
  2. 2.
    Bretl, T., Lall, S., Latombe, J.-C., Rock, S.: Multi-step motion planning for free-climbing robots. In: WAFR, Zeist, Netherlands (2004)Google Scholar
  3. 3.
    Chaudhuri, S., Koltun, V.: Smoothed analysis of probabilistic roadmaps. In: Fourth SIAM Conf. of Analytic Algorithms and Comp. Geometry (2007)Google Scholar
  4. 4.
    Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)MATHGoogle Scholar
  5. 5.
    Cortés, J., Siméon, T.: Sampling-based motion planning under kinematic loop-closure constraints. In: WAFR, Zeist, Netherlands (2004)Google Scholar
  6. 6.
    Hauser, K., Bretl, T., Latombe, J.-C.: Learning-assisted multi-step planning. In: IEEE Int. Conf. Rob. Aut., Barcelona, Spain (2005)Google Scholar
  7. 7.
    Hauser, K., Bretl, T., Latombe, J.-C.: Non-gaited humanoid locomotion planning. In: IEEE Humanoids, Tsukuba, Japan (2005)Google Scholar
  8. 8.
    Hauser, K., Bretl, T., Latombe, J.-C., Wilcox, B.: Motion planning for a six-legged lunar robot. In: WAFR, New York (2006)Google Scholar
  9. 9.
    Hsu, D., Kavraki, L.E., Latombe, J.-C., Motwani, R., Sorkin, S.: On finding narrow passages with probabilistic roadmap planners. In: WAFR, Natick, MA, pp. 141–153 (1998)Google Scholar
  10. 10.
    Hsu, D., Latombe, J., Kurniawati, H.: On the probabilistic foundations of probabilistic roadmap planning. Int. J. Rob. Res. 25(7), 627–643 (2006)CrossRefGoogle Scholar
  11. 11.
    Hsu, D., Latombe, J.-C., Motwani, R.: Path planning in expansive configuration spaces. In: IEEE Int. Conf. Rob. Aut., pp. 2219–2226 (1997)Google Scholar
  12. 12.
    Koga, Y., Latombe, J.-C.: On multi-arm manipulation planning. In: IEEE Int. Conf. Rob. Aut., San Diego, CA, pp. 945–952 (1994)Google Scholar
  13. 13.
    LaValle, S.M., Yakey, J.H., Kavraki, L.E.: A probabilistic roadmap approach for systems with closed kinematic chains. In: IEEE Int. Conf. Rob. Aut., Detroit, MI (1999)Google Scholar
  14. 14.
    Nielsen, C.L., Kavraki, L.E.: A two level fuzzy prm for manipulation planning. In: IEEE/RSJ Int. Conf. Int. Rob. Sys., pp. 1716–1721 (2000)Google Scholar
  15. 15.
    Nieuwenhuisen, D., van der Stappen, A.F., Overmars, M.H.: An effective framework for path planning amidst movable obstacles. In: WAFR, New York (2006)Google Scholar
  16. 16.
    Sahbani, A., Cortés, J., Siméon, T.: A probabilistic algorithm for manipulation planning under continuous grasps and placements. In: IEEE/RSJ Int. Conf. Int. Rob. Sys., Lausanne, Switzerland, pp. 1560–1565 (2002)Google Scholar
  17. 17.
    Sánchez, G., Latombe, J.-C.: On delaying collision checking in PRM planning: Application to multi-robot coordination. Int. J. of Rob. Res. 21(1), 5–26 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kris Hauser
    • 1
  • Jean-Claude Latombe
    • 1
  1. 1.Department of Computer ScienceStanford UniversityStanford

Personalised recommendations