Polyhedral Assembly Partitioning with Infinite Translations or The Importance of Being Exact

  • Efi Fogel
  • Dan Halperin
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 57)

Abstract

Assembly partitioning with an infinite translation is the application of an infinite translation to partition an assembled product into two complementing subsets of parts, referred to as a subassemblies, each treated as a rigid body. We present an exact implementation of an efficient algorithm to obtain such a motion and subassemblies given an assembly of polyhedra in ℝ3. We do not assume general position. Namely, we handle degenerate input, and produce exact results. As often occurs, motions that partition a given assembly or subassembly might be isolated in the infinite space of motions. Any perturbation of the input or of intermediate results, caused by, for example, imprecision, might result with dismissal of valid partitioning-motions. In the extreme case, where there is only a finite number of valid partitioning-motions, no motion may be found, even though such exists. The implementation is based on software components that have been developed and introduced only recently. They paved the way to a complete, efficient, and concise implementation. Additional information is available at http://acg.cs.tau.ac.il/projects/internal-projects/

assembly-partitioning/project-page.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., Flato, E., Halperin, D.: Polygon decomposition for efficient construction of Minkowski sums. Comput. Geom. Theory Appl. 21, 39–61 (2002)MATHMathSciNetGoogle Scholar
  2. 2.
    Berberich, E., Fogel, E., Halperin, D., Melhorn, K., Wein, R.: Sweeping and maintaining two-dimensional arrangements on surfaces: A first step. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 645–656. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bool, F.H., et al.: M. C. Escher: His Life and Complete Graphic Work. Harry N. Abrams, Inc. (1982)Google Scholar
  4. 4.
    Coffin, S.T.: Geometric Puzzle Design, 2nd edn. A.K. Peters, Ltd. (2006)Google Scholar
  5. 5.
    Fogel, E., Halperin, D.: Exact and efficient construction of Minkowski sums of convex polyhedra with applications. CAD 39(11), 929–940 (2007)Google Scholar
  6. 6.
    Fogel, E., Halperin, D., Weibel, C.: On the exact maximum complexity of Minkowski sums of convex polyhedra. In: Proc. 23rd Annu. ACM Symp. Comput. Geom., pp. 319–326 (2007)Google Scholar
  7. 7.
    Fogel, E., Setter, O., Halperin, D.: Exact implementation of arrangements of geodesic arcs on the sphere with applications. In: Abstracts of 24th Eur. Workshop Comput. Geom., pp. 83–86 (2008)Google Scholar
  8. 8.
    Fogel, E., Setter, O., Halperin, D.: Movie: Arrangements of geodesic arcs on the sphere. In: Proc. 24th Annu. ACM Symp. Comput. Geom., pp. 218–219 (2008)Google Scholar
  9. 9.
    Guibas, L.J., Halperin, D., Hirukawa, H., Latombe, J.-C., Wilson, R.H.: Polyhedral assembly partitioning using maximally covered cells in arrangements of convex polytopes. Int. J. Comput. Geom. Appl. 8, 179–200 (1998)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hachenberger, P.: Exact minkowksi sums of polyhedra and exact and efficient decomposition of polyhedra in convex pieces. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 669–680. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Halperin, D., Latombe, J.-C., Wilson, R.H.: A general framework for assembly planning: The motion space approach. Algorithmica 26, 577–601 (2000)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kavraki, L., Kolountzakis, M.: Partitioning a planar assembly into two connected parts is NP-complete. Inf. Process. Lett. 55, 159–165 (1995)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kettner, L.: Using generic programming for designing a data structure for polyhedral surfaces. Comput. Geom. Theory Appl. 13(1), 65–90 (1999)MATHGoogle Scholar
  14. 14.
    Kettner, L.: 3D polyhedral surfaces. In: Cgal Editorial Board (ed.) Cgal User and Reference Manual, 3.3rd edn. (2007)Google Scholar
  15. 15.
    Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.K.: Classroom examples of robustness problems in geometric computations. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 702–713. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Khanna, S., Motwani, R., Wilson, R.H.: On certificates and lookahead in dynamic graph problems. Algorithmica 21(4), 377–394 (1998)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Luke, D.: Stellations of the rhombic dodecahedron. The Math. Gazette 41(337), 189–194 (1957)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Natarajan, B.K.: On planning assemblies. In: Proc. 4th ACM Symp. Comput. Geom., pp. 299–308 (1988)Google Scholar
  19. 19.
    Snoeyink, J., Stolfi, J.: Objects that cannot be taken apart with two hands. Disc. Comput. Geom. 12, 367–384 (1994)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM J. on Computing 1(2), 146–160 (1972)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Wein, R., Fogel, E., Zukerman, B., Halperin, D.: 2D arrangements. In: Cgal Editorial Board (ed.) Cgal User and Reference Manual, 3.3 edn. (2007)Google Scholar
  22. 22.
    Wein, R., Fogel, E., Zukerman, B., Halperin, D.: Advanced programming techniques applied to Cgal’s arrangement package. Comput. Geom. Theory Appl. 38(1-2), 37–63 (2007); Special issue on Cgal MATHMathSciNetGoogle Scholar
  23. 23.
    Wilson, R.H., Latombe, J.-C.: Geometric reasoning about mechanical assembly. Artificial Intelligence 71(2), 371–396 (1994)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Efi Fogel
    • 1
  • Dan Halperin
    • 1
  1. 1.Tel-Aviv UniversityTel AvivIsrael

Personalised recommendations