Advertisement

Autophagy in Immunity Against Mycobacterium tuberculosis: a Model System to Dissect Immunological Roles of Autophagy

  • Vojo Deretic
  • Monica Delgado
  • Isabelle Vergne
  • Sharon Master
  • Sergio De Haro
  • Marisa Ponpuak
  • Sudha Singh
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 335)

Abstract

The recognition of autophagy as an immune mechanism has been affirmed in recent years. One of the model systems that has helped in the development of our current understanding of how autophagy and more traditional immunity systems cooperate in defense against intracellular pathogens is macrophage infection with Mycobacterium tuberculosis. M. tuberculosis is a highly significant human pathogen that latently infects billions of people and causes active disease in millions of patients worldwide. The ability of the tubercle bacillus to persist in human populations rests upon its macrophage parasitism. One of the initial reports on the ability of autophagy to act as a cell-autonomous innate immunity mechanism capable of eliminating intracellular bacteria was on M. tuberculosis. This model system has further contributed to the recognition of multiple connections between conventional immune regulators and autophagy. In this chapter, we will review how these studies have helped to establish the following principles: (1) autophagy functions as an innate defense mechanism against intracellular microbes; (2) autophagy is under the control of pattern recognition receptors (PRR) such as Toll-like receptors (TLR), and it acts as one of the immunological output effectors of PRR and TLR signaling; (3) autophagy is one of the effector functions associated with the immunity-regulated GTPases, which were initially characterized as molecules involved in cell-autonomous defense, but whose mechanism of function was unknown until recently; (4) autophagy is an immune effector of Th1/Th2 T cell response polarization—autophagy is activated by Th1 cytokines (which act in defense against intracellular pathogens) and is inhibited by Th2 cytokines (which make cells accessible to intracellular pathogens). Collectively, the studies employing the M. tuberculosis autophagy model system have contributed to the development of a more comprehensive view of autophagy as an immunological process. This work and related studies by others have led us to propose a model of how autophagy, an ancient innate immunity defense, became integrated over the course of evolution with other immune mechanisms of ever-increasing complexity.

Keywords

Pattern Recognition Receptor Intracellular Pathogen Autophagy Induction Antimycobacterial Action Innate Immunity Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alonso S, Pethe K, Russell DG, Purdy GE (2007) Lysosomal killing of mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proc Natl Acad Sci USA 104:6031–6036CrossRefPubMedGoogle Scholar
  2. Andrade RM, Wessendarp M, Gubbels MJ, Striepen B, Subauste CS (2006) CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. J Clin Invest 116:2366–2377CrossRefPubMedGoogle Scholar
  3. Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276:35243–35246CrossRefPubMedGoogle Scholar
  4. Armstrong JA, Hart PDA (1971) Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 134:713–740CrossRefPubMedGoogle Scholar
  5. Armstrong JA, Hart PD (1975) Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. reversal of the usual nonfusion pattern and observations of bacterial survival. J Exp Med 142:1–16Google Scholar
  6. Behar S, Boom W (2008) Unconventional T cells. In: Kaufmann S, Britton W (eds) Handbook of tuberculosis: immunology and cell biology. Wiley-VCH, Weinheim, pp 157–183Google Scholar
  7. Bekpen C, Hunn JP, Rohde C, Parvanova I, Guethlein L, Dunn DM, Glowalla E, Leptin M, Howard JC (2005) The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome Biol 6:R92CrossRefPubMedGoogle Scholar
  8. Birmingham CL, Canardien V, Kaniuk NA, Steinberg BE, Higgins DE, Brumell JH (2008) Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature 451:350–354CrossRefPubMedGoogle Scholar
  9. Birmingham CL, Smith AC, Bakowski MA, Yoshimori T, Brumell JH (2006) Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem 28(6):11374–11383CrossRefGoogle Scholar
  10. Biswas D, Qureshi OS, Lee WY, Croudace JE, Mura M, Lammas DA (2008) ATP-induced autophagy is associated with rapid killing of intracellular mycobacteria within human monocytes/macrophages. BMC Immunol 9:35CrossRefPubMedGoogle Scholar
  11. Burton PR et al (The Wellcome Trust Case Control Consortium) (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678CrossRefGoogle Scholar
  12. Chaturvedi A, Dorward D, Pierce SK (2008) The B cell receptor governs the subcellular location of Toll-like receptor 9 leading to hyperresponses to DNA-containing antigens. Immunity 28:799–809CrossRefPubMedGoogle Scholar
  13. Checroun C, Wehrly TD, Fischer ER, Hayes SF, Celli J (2006) Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci USA 103:14578–14583CrossRefPubMedGoogle Scholar
  14. Cullinane M, Gong L, Li X, Lazar-Adler N, Tra T, Wolvetang E, Prescott M, Boyce JD, Devenish RJ, Adler B (2008) Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines. Autophagy 4:744–753PubMedGoogle Scholar
  15. Davis AS, Vergne I, Master SS, Kyei GB, Chua J, Deretic V (2007) Mechanism of inducible nitric oxide synthase exclusion from mycobacterial phagosomes. PLoS Pathog 3:e186CrossRefPubMedGoogle Scholar
  16. Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V (2008) Toll-like receptors control autophagy. EMBO J 27:1110–1121CrossRefPubMedGoogle Scholar
  17. Deretic V (2005) Autophagy in innate and adaptive immunity. Trends Immunol 26:523–528CrossRefPubMedGoogle Scholar
  18. Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Souquere S, Pierron G, Codogno P (2006) NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 281:30373–30382CrossRefPubMedGoogle Scholar
  19. Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC (1999) Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282:677–686CrossRefPubMedGoogle Scholar
  20. Feng CG, Weksberg DC, Taylor GA, Sher A, Goodell MA (2008) The p47 GTPase Lrg-47 (Irgm1) links host defense and hematopoietic stem cell proliferation. Cell Stem Cell 2:83–89CrossRefPubMedGoogle Scholar
  21. Floto RA, Sarkar S, Perlstein EO, Kampmann B, Schreiber SL, Rubinsztein DC (2007) Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington’s disease models and enhance killing of mycobacteria by macrophages. Autophagy 3:620–622PubMedGoogle Scholar
  22. Flynn JL, Chan J (2001) Immunology of tuberculosis. Annu Rev Immunol 19:93–129CrossRefPubMedGoogle Scholar
  23. Fortin A, Abel L, Casanova JL, Gros P (2007) Host genetics of mycobacterial diseases in mice and men: forward genetic studies of BCG-osis and tuberculosis. Annu Rev Genomics Hum Genet 8:163–192CrossRefPubMedGoogle Scholar
  24. Goldfeld A, Ranjbar S, Tsitsikov E (2008) Tuberculosis/human immunodeficiency virus coinfection and the host immune response. In: Kaufmann S, Britton W (eds) Handbook of tuberculosis: immunology and cell biology. Wiley-VCH, Weinheim, pp 347–368Google Scholar
  25. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766CrossRefPubMedGoogle Scholar
  26. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J, Gunther S, Prescott NJ, Onnie CM, Hasler R, Sipos B, Folsch UR, Lengauer T, Platzer M, Mathew CG, Krawczak M, Schreiber S (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39:207–211CrossRefPubMedGoogle Scholar
  27. Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M, Deretic V (2007) T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27:505–517CrossRefPubMedGoogle Scholar
  28. Howard J (2008) The IRG proteins: a function in search of a mechanism. Immunobiology 213:367–375CrossRefPubMedGoogle Scholar
  29. Howell SJ, Wilk D, Yadav SP, Bevins CL (2003) Antimicrobial polypeptides of the human colonic epithelium. Peptides 24:1763–1770CrossRefPubMedGoogle Scholar
  30. Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A (2002) DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 157:455–468CrossRefPubMedGoogle Scholar
  31. Ishii KJ, Koyama S, Nakagawa A, Coban C, Akira S (2008) Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe 3:352–363CrossRefPubMedGoogle Scholar
  32. Jackson WT, Giddings TH, Jr, Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR, Kirkegaard K (2005) Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 3:e156CrossRefPubMedGoogle Scholar
  33. Jounai N, Takeshita F, Kobiyama K, Sawano A, Miyawaki A, Xin KQ, Ishii KJ, Kawai T, Akira S, Suzuki K, Okuda K (2007) The Atg5-Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci USA 104:14050–14055CrossRefPubMedGoogle Scholar
  34. Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R (2008) TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 9:361–368CrossRefPubMedGoogle Scholar
  35. Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, Akira S (2004) Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 5:1061–1068CrossRefPubMedGoogle Scholar
  36. Kieffer AE, Goumon Y, Ruh O, Chasserot-Golaz S, Nullans G, Gasnier C, Aunis D, Metz-Boutigue MH (2003) The N- and C-terminal fragments of ubiquitin are important for the antimicrobial activities. FASEB J 17:776–778PubMedGoogle Scholar
  37. Kraft C, Deplazes A, Sohrmann M, Peter M (2008) Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 10:602–610CrossRefPubMedGoogle Scholar
  38. Lammas DA, Stober C, Harvey CJ, Kendrick N, Panchalingam S, Kumararatne DS (1997) ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors. Immunity 7:433–444CrossRefPubMedGoogle Scholar
  39. Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A (2007) Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315:1398–1401CrossRefPubMedGoogle Scholar
  40. Lee MS, Kim YJ (2007) Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem 76:447–480CrossRefPubMedGoogle Scholar
  41. Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8:3–5CrossRefPubMedGoogle Scholar
  42. Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7:767–777CrossRefPubMedGoogle Scholar
  43. Lewinsohn DM, Briden AL, Reed SG, Grabstein KH, Alderson MR (2000) Mycobacterium tuberculosis-reactive CD8+ T lymphocytes: the relative contribution of classical versus nonclassical HLA restriction. J Immunol 165:925–930PubMedGoogle Scholar
  44. Li C, Capan E, Zhao Y, Zhao J, Stolz D, Watkins SC, Jin S, Lu B (2006) Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal cell death. J Immunol 177:5163–5168PubMedGoogle Scholar
  45. Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B, Levine B (1998) Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein. J Virol 72:8586–8596PubMedGoogle Scholar
  46. Ling YM, Shaw MH, Ayala C, Coppens I, Taylor GA, Ferguson DJ, Yap GS (2006) Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages. J Exp Med 203:2063–2071CrossRefPubMedGoogle Scholar
  47. Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567–577CrossRefPubMedGoogle Scholar
  48. Lyamzaev KG, Nepryakhina OK, Saprunova VB, Bakeeva LE, Pletjushkina OY, Chernyak BV, Skulachev VP (2008) Novel mechanism of elimination of malfunctioning mitochondria (mitoptosis): formation of mitoptotic bodies and extrusion of mitochondrial material from the cell. Biochim Biophys Acta 1777:817–825CrossRefPubMedGoogle Scholar
  49. MacMicking JD, Taylor GA, McKinney JD (2003) Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302:654–659CrossRefPubMedGoogle Scholar
  50. Majlessi L, Combaluzier B, Albrecht I, Garcia JE, Nouze C, Pieters J, Leclerc C (2007) Inhibition of phagosome maturation by mycobacteria does not interfere with presentation of mycobacterial antigens by MHC molecules. J Immunol 179:1825–1833PubMedGoogle Scholar
  51. Manabe YC, Bishai WR (2000) Latent Mycobacterium tuberculosis-persistence, patience, and winning by waiting. Nat Med 6:1327–1329CrossRefPubMedGoogle Scholar
  52. Martens S, Howard J (2006) The interferon-inducible GTPases. Annu Rev Cell Dev Biol 22:559–589CrossRefPubMedGoogle Scholar
  53. Martens S, Parvanova I, Zerrahn J, Griffiths G, Schell G, Reichmann G, Howard JC (2005) Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases. PLoS Pathog 1:e24CrossRefPubMedGoogle Scholar
  54. Massey D, Parkes M (2007) Common pathways in Crohn’s disease and other inflammatory diseases revealed by genomics. Gut 56:1489–1492CrossRefPubMedGoogle Scholar
  55. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449:819–826CrossRefPubMedGoogle Scholar
  56. Moody DB, Young DC, Cheng TY, Rosat JP, Roura-Mir C, O’Connor PB, Zajonc DM, Walz A, Miller MJ, Levery SB, Wilson IA, Costello CE, Brenner MB (2004) T cell activation by lipopeptide antigens. Science 303:527–531CrossRefPubMedGoogle Scholar
  57. Nahid P, Daley CL (2006) Prevention of tuberculosis in HIV-infected patients. Curr Opin Infect Dis 19:189–193CrossRefPubMedGoogle Scholar
  58. Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, Hamada S, Yoshimori T (2004) Autophagy defends cells against invading group A Streptococcus. Science 306:1037–1040CrossRefPubMedGoogle Scholar
  59. Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE (1999) The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol 17:701–738CrossRefPubMedGoogle Scholar
  60. Nunn P, Williams B, Floyd K, Dye C, Elzinga G, Raviglione M (2005) Tuberculosis control in the era of HIV. Nat Rev Immunol 5:819–826CrossRefPubMedGoogle Scholar
  61. O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353–364CrossRefPubMedGoogle Scholar
  62. Oawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C (2005) Escape of intracellular Shigella from autophagy. Science 307:727–731CrossRefGoogle Scholar
  63. Orvedahl A, Alexander D, Tallóczy Z, Sun Q, Wei Y, Zhang W, Burns D, Leib D, Levine B (2007) HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1:23–35CrossRefPubMedGoogle Scholar
  64. Ottenhoff H, Lewinsohn D, Lewinsohn D (2008) Human CD4 and CD8 cell responses to Mycobacterium tuberculosis: antigen specificity, function, implications and applications. In: Kaufmann S, Britton D (eds) Handbook of tuberculosis: immunology and cell biology. Wiley-VCH, Weinheim, pp 119–155Google Scholar
  65. Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Munz C (2005) Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307:593–596CrossRefPubMedGoogle Scholar
  66. Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, Roberts RG, Nimmo ER, Cummings FR, Soars D, Drummond H, Lees CW, Khawaja SA, Bagnall R, Burke DA, Todhunter CE, Ahmad T, Onnie CM, McArdle W, Strachan D, Bethel G, Bryan C, Lewis CM, Deloukas P, Forbes A, Sanderson J, Jewell DP, Satsangi J, Mansfield JC, Cardon L, Mathew CG (2007) Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 39:830–832CrossRefPubMedGoogle Scholar
  67. Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275:992–998CrossRefPubMedGoogle Scholar
  68. Pieters J (2008) Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe 3:399–407CrossRefPubMedGoogle Scholar
  69. Py BF, Lipinski MM, Yuan J (2007) Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy 3:117–125PubMedGoogle Scholar
  70. Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, Woo HN, Cho DH, Choi B, Lee H, Kim JH, Mizushima N, Oshumi Y, Jung YK (2005) Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 280:20722–20729CrossRefPubMedGoogle Scholar
  71. Ramachandra L, Smialek JL, Shank SS, Convery M, Boom WH, Harding CV (2005) Phagosomal processing of Mycobacterium tuberculosis antigen 85B is modulated independently of mycobacterial viability and phagosome maturation. Infect Immun 73:1097–1105CrossRefPubMedGoogle Scholar
  72. Reid A, Scano F, Getahun H, Williams B, Dye C, Nunn P, De Cock KM, Hankins C, Miller B, Castro KG, Raviglione MC (2006) Towards universal access to HIV prevention, treatment, care, and support: the role of tuberculosis/HIV collaboration. Lancet Infect Dis 6:483–495CrossRefPubMedGoogle Scholar
  73. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW, Shugart YY, Griffiths AM, Targan SR, Ippoliti AF, Bernard EJ, Mei L, Nicolae DL, Regueiro M, Schumm LP, Steinhart AH, Rotter JI, Duerr RH, Cho JH, Daly MJ, Brant SR (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39:596–604CrossRefPubMedGoogle Scholar
  74. Russell DG (2007) Who puts the tubercle in tuberculosis? Nat Rev Microbiol 5:39–47CrossRefPubMedGoogle Scholar
  75. Sabauste C, Andrade R, Wessendarp M (2007) CD40-TRAF6 and autophagy-dependent anti-microbial activity in macrophages. Autophagy 3:245–248Google Scholar
  76. Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454:232–235CrossRefPubMedGoogle Scholar
  77. Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, Komatsu M, Tanaka K, Cleveland JL, Withoff S, Green DR (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450:1253–1257CrossRefPubMedGoogle Scholar
  78. Saunders BM, Britton WJ (2007) Life and death in the granuloma: immunopathology of tuberculosis. Immunol Cell Biol 85:103–111CrossRefPubMedGoogle Scholar
  79. Schlottmann S, Buback F, Stahl B, Meierhenrich R, Walter P, Georgieff M, Senftleben U (2008) Prolonged classical NF-kappaB activation prevents autophagy upon E. coli stimulation in vitro: a potential resolving mechanism of inflammation. Mediators Inflamm 2008:725–854CrossRefGoogle Scholar
  80. Schmid D Munz C (2007) Innate and adaptive immunity through autophagy. Immunity 27:11–21CrossRefGoogle Scholar
  81. Schmid D, Pypaert M, Munz C (2007) Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26:79–92CrossRefPubMedGoogle Scholar
  82. Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, Kundu M, Opferman JT, Cleveland JL, Miller JL, Ney PA (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 104:19500–19505CrossRefPubMedGoogle Scholar
  83. Singh SB, Davis AS, Taylor GA, Deretic V (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313:1438–1441CrossRefPubMedGoogle Scholar
  84. Takeuchi O, Akira S (2008) MDA5/RIG-I and virus recognition. Curr Opin Immunol 20:17–22CrossRefPubMedGoogle Scholar
  85. Talloczy Z, Jiang W, Virgin HW IV, Leib DA, Scheuner D, Kaufman RJ, Eskelinen EL, Levine B (2002) Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci USA 99:190–195CrossRefPubMedGoogle Scholar
  86. Taylor GA, Feng CG, Sher A (2004) p47 GTPases: regulators of immunity to intracellular pathogens. Nat Rev Immunol 4:100–109CrossRefPubMedGoogle Scholar
  87. Torres M, Ramachandra L, Rojas RE, Bobadilla K, Thomas J, Canaday DH, Harding CV, Boom WH (2006) Role of phagosomes and major histocompatibility complex class II (MHC-II) compartment in MHC-II antigen processing of Mycobacterium tuberculosis in human macrophages. Infect Immun 74:1621–1630CrossRefPubMedGoogle Scholar
  88. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. Embo J 27:433–446CrossRefPubMedGoogle Scholar
  89. Vandal OH, Pierini LM, Schnappinger D, Nathan CF, Ehrt S (2008) A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat Med 14:849–854CrossRefPubMedGoogle Scholar
  90. Vergne I, Chua J, Singh S, Deretic V (2004) Cell biology of Mycobacterium tuberculosis phagosome. Annu Rev Cell Dev Biol 20:367–394CrossRefPubMedGoogle Scholar
  91. Virgin H (2008) A ‘fly-by’ killing with a primordial cellular weapon. Nat Immunol 9: 827–829CrossRefPubMedGoogle Scholar
  92. Xu Y, Jagannath C, Liu XD, Sharafkhaneh A, Kolodziejska KE, Eissa NT (2007) Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27:135–144CrossRefPubMedGoogle Scholar
  93. Yano T, Mita S, Ohmori H, Oshima Y, Fujimoto Y, Ueda R, Takada H, Goldman WE, Fukase K, Silverman N, Yoshimori T, Kurata S (2008) Autophagic control of Listeria through intracellular innate immune recognition in Drosophila. Nat Immunol 9:908–916CrossRefPubMedGoogle Scholar
  94. Yuan Y, Lee RE, Besra GS, Belisle JT, Barry CE, 3rd (1995) Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 92:6630–6634CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Vojo Deretic
    • 1
  • Monica Delgado
    • 1
  • Isabelle Vergne
    • 1
  • Sharon Master
    • 1
  • Sergio De Haro
    • 1
  • Marisa Ponpuak
    • 1
  • Sudha Singh
    • 1
  1. 1.Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueUSA

Personalised recommendations