Biosynthesis of Fungal Polyketides

Part of the The Mycota book series (MYCOTA, volume 15)


Fungal polyketides comprise a diverse group of secondary metabolites that play an important role for drug discovery, as pigments, and as mycotoxins. Their biosynthesis is governed by multidomain enzymes, so-called fungal type I polyketide synthases (PKS). Investigating the molecular basis of polyketide biosynthesis in fungi is of great importance for ecological and pharmacological reasons. Cloning, functional analysis and expression of fungal PKS genes also set the basis for engineering a yet largely untapped biosynthetic potential. This review summarizes the current knowledge on fungal PKS.


  1. Abe Y, Suzuki T, et al (2002) Molecular cloning and characterization of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum. Mol Genet Genomics 267:636–646PubMedGoogle Scholar
  2. Alberts AW, Chen J, et al (1980) Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA 77:3957–3961PubMedGoogle Scholar
  3. Baker SE, Kroken S, et al (2006) Two polyketide synthase-encoding genes are required for biosynthesis of the polyketide virulence factor, T-toxin, by Cochliobolus heterostrophus. Mol Plant Microbe Interact 19:139–149PubMedGoogle Scholar
  4. Bate C, Salmona M, et al (2004) Squalestatin cures prion-infected neurons and protects against prion neurotoxicity. J Biol Chem 279:14983–14990PubMedGoogle Scholar
  5. Baulcombe DC (1999) Gene silencing: RNA makes RNA makes no protein. Curr Biol 22:1559–1566Google Scholar
  6. Beck J, Ripka S, et al (1990) The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum. Its gene structure relative to that of other polyketide synthases. Eur J Biochem 192:487–498PubMedGoogle Scholar
  7. Bedford DJ, Schweizer E, et al (1995) Expression of a functional fungal polyketide synthase in the bacterium Streptomyces coelicolor A3(2). J Bacteriol 177:4544–4548PubMedGoogle Scholar
  8. Bennett JW, Chang PK, et al (1997) One gene to whole pathway: the role of norsolorinic acid in aflatoxin research. Adv Appl Microbiol 45:1–15PubMedGoogle Scholar
  9. Bergmann S, Schuemann J, et al (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217PubMedGoogle Scholar
  10. Bhatnagar D, Ehrlich KC, et al (2003) Molecular genetic analysis and regulation of aflatoxin biosynthesis. Appl Microbiol Biotechnol 61:83–93PubMedGoogle Scholar
  11. Binder M, Tamm C (1973) Die Cytochalasane, eine neue Klasse biologisch aktiver Metabolite von Mikroorganismen. Angew Chem Int Ed Engl 9:369–420Google Scholar
  12. Bingle LE, Simpson TJ, et al (1999) Ketosynthase domain probes identify two subclasses of fungal polyketide synthase genes. Fungal Genet Biol 26:209–223PubMedGoogle Scholar
  13. Birch AJ, Donovan FW (1953) Studies in relation to biosynthesis. I. Some possible routes to derivatives of orcinol and phloroglucinol. Aust J Chem 6:360–368Google Scholar
  14. Bloch P, Tamm C, et al (1976) Pseurotin, a new metabolite of Pseudeurotium ovalis Stolk having an unusual hetero-spirocyclic system. Helv Chim Acta 59:133–137PubMedGoogle Scholar
  15. Böhnert HU, Fudal I, et al (2004) A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 16:2499–2513PubMedGoogle Scholar
  16. Bradshaw RE, Jin H, et al (2006) A polyketide synthase gene required for biosynthesis of the aflatoxin-like toxin, dothistromin. Mycopathologia 161:283–294PubMedGoogle Scholar
  17. Brakhage AA, Langfelder K (2002) Menacing mold: the molecular biology of Aspergillus fumigatus. Annu Rev Microbiol 56:433–455PubMedGoogle Scholar
  18. Brown AG, Smale TC, et al (1976) Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum. J Chem Soc [Perkin 1]:1165–1170Google Scholar
  19. Brown DW, Yu JH, et al (1996) Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci USA 93:1418–1422PubMedGoogle Scholar
  20. Brown JS, Aufauvre-Brown A, et al (1998) Insertional mutagenesis of Aspergillus fumigatus. Mol Gen Genet 259:327–335PubMedGoogle Scholar
  21. Burkart MD (2003) Metabolic engineering – a genetic toolbox for small molecule organic synthesis. Org Biomol Chem 1:1–4PubMedGoogle Scholar
  22. Butler MJ, Day AW (1998) Fungal melanins: a review. Can J Microbiol 44:1115–1136Google Scholar
  23. Cane DE, Walsh CT, et al (1998) Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282:63–68PubMedGoogle Scholar
  24. Chang PK, Cary JW, et al (1995) The Aspergillus parasiticus polyketide synthase gene pksA, a homolog of Aspergillus nidulans wA, is required for aflatoxin B1 biosynthesis. Mol Gen Genet 248:270–277PubMedGoogle Scholar
  25. Christian OE, Compton J, et al (2005) Using jasplakinolide to turn on pathways that enable the isolation of new chaetoglobosins from Phomospis asparagi. J Nat Prod 68:1592–1597PubMedGoogle Scholar
  26. Chu FS (1991) Mycotoxins: food contamination, mechanism, carcinogenic potential and preventive measures. Mutat Res 259:291–306PubMedGoogle Scholar
  27. Cox RJ (2007) Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. Org Biomol Chem 5:2010–2026PubMedGoogle Scholar
  28. Cox RJ, Glod F, et al (2004) Rapid cloning and expression of a fungal polyketide synthase gene involved in squalestatin biosynthesis. Chem Commun (Camb) :2260–2261Google Scholar
  29. Crawford JM, Dancy BC, et al (2006) Identification of a starter unit acyl-carrier protein transacylase domain in an iterative type I polyketide synthase. Proc Natl Acad Sci USA 103:16728–16733PubMedGoogle Scholar
  30. Crawford JM, Thomas PM, et al (2008) Deconstruction of iterative multidomain polyketide synthase function. Science 320:243–246PubMedGoogle Scholar
  31. Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249PubMedGoogle Scholar
  32. Dawson MJ, Farthing JE, et al (1992) The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. J Antibiot 45:639–647PubMedGoogle Scholar
  33. Deacon JW (2001) Modern mykology. Blackwell, LondonGoogle Scholar
  34. Eaton DL, Groopman JD (1994) The toxicology of aflatoxins: human health, veterinary, and agricultural significance. Academic, San DiegoGoogle Scholar
  35. Eley KL, Halo LM, et al (2007) Biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana. Chembiochem 8:289–297PubMedGoogle Scholar
  36. Endo A, Kuroda M, et al (1976) ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J Antibiot (Tokyo) 29:1346–1348Google Scholar
  37. Feng B, Wang X, et al (2001) Molecular cloning and characterization of WdPKS1, a gene involved in dihydroxynaphthalene melanin biosynthesis and virulence in Wangiella (Exophiala) dermatitidis. Infect Immun 69:1781–1794PubMedGoogle Scholar
  38. Feng GH, Leonard TJ (1995) Characterization of the polyketide synthase gene (pksL1) required for aflatoxin biosynthesis in Aspergillus parasiticus. J Bacteriol 177:6246–6254PubMedGoogle Scholar
  39. Fujii I, Ono Y, et al (1996) Cloning of the polyketide synthase gene atX from Aspergillus terreus and its identification as the 6-methylsalicylic acid synthase gene by heterologous expression. Mol Gen Genet 253:1–10PubMedGoogle Scholar
  40. Fujii I, Watanabe A, et al (2001) Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chem Biol 8:189–197PubMedGoogle Scholar
  41. Fujii I, Yoshida N, et al (2005) An iterative type I polyketide synthase PKSN catalyzes synthesis of the decaketide alternapyrone with regio-specific octa-methylation. Chem Biol 12:1301–1309PubMedGoogle Scholar
  42. Gaffoor I, Trail F (2006) Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella zeae. Appl Environ Microbiol 72:1793–1799PubMedGoogle Scholar
  43. Gaucher GM, Shepherd MG (1968) Isolation of orsellinic acid synthase. Biochem Biophys Res Commun 32:664–671PubMedGoogle Scholar
  44. Grube M, Blaha J (2003) On the phylogeny of some polyketide synthase genes in the lichenized genus Lecanora. Mycol Res 107:1419–1426PubMedGoogle Scholar
  45. Hajjaj H, Klaebe A, et al (1999) Biosynthetic pathway of citrinin in the filamentous fungus Monascus ruber as revealed by 13C nuclear magnetic resonance. Appl Environ Microbiol 65:311–314PubMedGoogle Scholar
  46. Halo LM, Marshall JW, et al (2008) Authentic heterologous expression of the tenellin iterative polyketide synthase nonribosomal peptide synthetase requires coexpression with an enoyl reductase. Chembiochem 9:585–594PubMedGoogle Scholar
  47. Hendrickson L, Davis CR, et al (1999) Lovastatin biosynthesis in Aspergillus terreus: characterization of blocked mutants, enzyme activities and a multifunctional polyketide synthase gene. Chem Biol 6:429–439PubMedGoogle Scholar
  48. Hitchman TS, Schmidt EW, et al (2001) Hexanoate synthase, a specialized type I fatty acid synthase in aflatoxin B1 biosynthesis. Bioorg Chem 29:293–307PubMedGoogle Scholar
  49. Howard RJ, Ferrari MA, et al (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA 88:11281–11284PubMedGoogle Scholar
  50. Hutchinson RC, Kennedy J, et al (2000) Aspects of the biosynthesis of non-aromatic fungal polyketides by iterative polyketide synthases. Antonie Van Leeuwenhoek 78:287–295PubMedGoogle Scholar
  51. Jahn B, Koch A, et al (1997) Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence. Infect Immun 65:5110–5117PubMedGoogle Scholar
  52. Jones CA, Sidebottom PJ, et al (1992) The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. III. Biosynthesis. J Antibiot 45:1492–1498PubMedGoogle Scholar
  53. Kasahara K, Fujii I, et al (2006) Expression of Alternaria solani PKSF generates a set of complex reduced-type polyketides with different carbon-lengths and cyclization. Chembiochem 7:920–924PubMedGoogle Scholar
  54. Kealey JT, Liu L, et al (1998) Production of a poyketide natural product in nonpolyketide-producing procaryotic and eukaryotic hosts. Proc Natl Acad Sci USA 95:505–509PubMedGoogle Scholar
  55. Keatinge-Clay AT, Maltby DA, et al (2004) An antibiotic factory caught in action. Nat Struct Mol Biol 11:888–893PubMedGoogle Scholar
  56. Kempken F, Kuck U (2000) Tagging of a nitrogen pathway-specific regulator gene in Tolypocladium inflatum by the transposon Restless. Mol Gen Genet 263:302–308PubMedGoogle Scholar
  57. Kempken F, Jacobsen S, et al (1998) Distribution of the fungal transposon Restless: full-length and truncated copies in closely related strains. Fungal Genet Biol 25:110–118PubMedGoogle Scholar
  58. Kennedy J, Auclair K, et al (1999) Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284:1368–1372PubMedGoogle Scholar
  59. Keszenman-Pereyra D, Lawrence S, et al (2003) The npgA/ cfwA gene encodes a putative 4′-phosphopantetheinyl transferase which is essential for penicillin biosynthesis in Aspergillus nidulans. Curr Genet 43:186–190PubMedGoogle Scholar
  60. Khaldi N, Collemare J, et al (2008) Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi. Genome Biol 9:R18PubMedGoogle Scholar
  61. Komagata D, Fujita S, et al (1996) Novel neuritogenic activities of pseurotin A and penicillic acid. J Antibiot (Tokyo) 49:958–959Google Scholar
  62. Kono Y, Daly JM (1979) Characterization of the host-specific pathotoxin produced by Helminthosporium maydis, race T, affecting corn with Texas male sterile cytoplasm. Bioorg Chem 8:391–397Google Scholar
  63. Kono Y, Takeuchi S, et al (1980) Studies on the host-specific pathotoxins produced by Helminthosporium maydis race T. Agric Biol Chem 44:2613–2622Google Scholar
  64. Kono Y, Takeuchi S, et al (1981) Studies on the host-specific pathotoxins produced in minor amounts by Helminthosporium maydis, race T. Bioorg Chem 10:206–218Google Scholar
  65. Kono Y, Danko SJ, et al (1983) Structure of the host-specific pathotoxins produced by Phyllosticta maydis. Tetrahedron Lett 24:3803–3806Google Scholar
  66. Kroken S, Glass LN, et al (2003) Phylogenetic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci USA 100:15670–15675PubMedGoogle Scholar
  67. Langfelder K, Streibel M, et al (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158PubMedGoogle Scholar
  68. Linnemannstons P, Schulte J, et al (2002) The polyketide synthase gene pks4 from Gibberella fujikuroi encodes a key enzyme in the biosynthesis of the red pigment bikaverin. Fungal Genet Biol 37:134–148PubMedGoogle Scholar
  69. Lodish H, Berk A, et al (2001) Molekulare Zellbiologie. Spektrum, ViennaGoogle Scholar
  70. Lu P, Zhang A, et al (2005) A gene (pks2) encoding a putative 6-methylsalicylic acid synthase from Glarea lozoyensis. Mol Genet Genomics 273:207–216PubMedGoogle Scholar
  71. Ma SM, Zhan J, et al (2007) Enzymatic synthesis of aromatic polyketides using PKS4 from Gibberella fujikuroi. J Am Chem Soc 129:10642–10643PubMedGoogle Scholar
  72. Ma SM, Zhan J, et al (2008) Redirecting the cyclization steps of fungal polyketide synthase. J Am Chem Soc 130:38–39PubMedGoogle Scholar
  73. Maiya S, Grundmann A, et al (2007) Identification of a hybrid PKS/NRPS required for pseurotin A biosynthesis in the human pathogen Aspergillus fumigatus. Chembiochem 8:1736–1743PubMedGoogle Scholar
  74. Miller DA, Lunsong L, et al (2002) Yersiniabactin synthetase: A four-protein assembly line producing the nonribosomal peptide/polyketide hybrid siderophore of Yersinia pestis. Chem Biol 9:333–344PubMedGoogle Scholar
  75. Minto RE, Townsend CA (1997) Enzymology and molecular biology of aflatoxin biosynthesis. Chem Rev 97:2537–2556PubMedGoogle Scholar
  76. Moore RN, Gigam G, et al (1985) Biosynthesis of the hypercholesterolemic agent mevinolin by Aspergillus terreus: determination of the origin of carbon, hydrogen and oxygen atoms by carbon-13 NMR and mass spectrometory. J Am Chem Soc 107:3694–3701Google Scholar
  77. Moriguchi T, Ebizuka Y, et al (2006) Analysis of subunit interactions in the iterative type I polyketide synthase ATX from Aspergillus terreus. Chembiochem 7:1869–1874PubMedGoogle Scholar
  78. Moss MO (1998) Recent studies of mycotoxins. Symp Ser Soc Appl Microbiol 27:62S–76SPubMedGoogle Scholar
  79. Munkvold GP, Desjardins AE (1997) Fumonisins in maize: can we reduce their occurrence?. Plant Dis 81:556–565Google Scholar
  80. Nakayashiki H, Hanada S, et al (2005) RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet Biol 42:275–283PubMedGoogle Scholar
  81. Nelson PE, Desjardins AE, et al (1993) Fumonisins, mycotoxins produced by fusarium species: biology, chemistry, and significance. Annu Rev Phytopathol 31:233–252PubMedGoogle Scholar
  82. Nicholson TP, Rudd BA, et al (2001) Design and utility of oligonucleotide gene probes for fungal polyketide synthases. Chem Biol 8:157–178PubMedGoogle Scholar
  83. Oikawa H, Tokiwano T (2004) Enzymatic catalysis of the Diels–Alder reaction in the biosynthesis of natural products. Nat Prod Rep 21:321–352PubMedGoogle Scholar
  84. Oikawa H, Murakami Y, et al (1991) New plausible precursors of chaetoglobosin A accumulated by treatment of Chaetomium subaffine with cytochrome P-450 inhibitors. Tetrahedron Lett 32:4533–4536Google Scholar
  85. Perpetua NS, Kubo Y, et al (1996) Cloning and characterization of a melanin biosynthetic THR1 reductase gene essential for appressorial penetration of Colletotrichum lagenarium. Mol Plant Microbe Interact 9:323–329PubMedGoogle Scholar
  86. Pfeifer BA, Khosla C (2001) Biosynthesis of polyketides in heterologous hosts. Microbiol Mol Biol Rev 65:106–118PubMedGoogle Scholar
  87. Proctor RH, Desjardins AE, et al (1999) A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet Biol 27:100–112PubMedGoogle Scholar
  88. Reeves CD (2003) The enzymology of combinatorial biosynthesis. Crit Rev Biotechnol 23:95–147PubMedGoogle Scholar
  89. Schmitt I, Martin MP, et al (2005) Diversity of non-reducing polyketide synthase genes in the Pertusariales (lichenized Ascomycota): a phylogenetic perspective. Phytochemistry 66:1241–1253PubMedGoogle Scholar
  90. Schuemann J, Hertweck C (2006) Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes. J Biotechnol 124:690–703Google Scholar
  91. Schuemann J, Hertweck C (2007) Molecular basis of cytochalasan biosynthesis in fungi: gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing.Google Scholar
  92. Scott PM, Harwig J, et al (1975) Cytochalasins A and B from strains of Phoma exigua var. exigua and formation of cytochalasin B in potato gangrene. J Gen Microbiol 87:177–180PubMedGoogle Scholar
  93. Seshime Y, Juvvadi PR, et al (2005) Discovery of a novel superfamily of type III polyketide synthases in Aspergillus oryzae. Biochem Biophys Res Commun 331:253–260PubMedGoogle Scholar
  94. Shimizu T, Kinoshita H, et al (2005) Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus. Appl Environ Microbiol 71:3453–3457PubMedGoogle Scholar
  95. Sims JW, Fillmore JP, et al (2005) Equisetin biosynthesis in Fusarium heterosporum. Chem Commun (Camb) 2005:186–188Google Scholar
  96. Song Z, Cox RJ, et al (2004) Fusarin C biosynthesis in Fusarium moniliforme and Fusarium venenatum. Chembiochem 5:1196–1203PubMedGoogle Scholar
  97. Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millenium review. Nat Prod Rep 18:380–416PubMedGoogle Scholar
  98. Steglich W, Fugmann B, et al (1997). Römpp Lexikon Naturstoffe, ThiemeGoogle Scholar
  99. Sweeney MJ, Dobson AD (1999) Molecular biology of mycotoxin biosynthesis. FEMS Microbiol Lett 175:149–163PubMedGoogle Scholar
  100. Takano Y, Kubo Y, et al (1995) Structural analysis of PKS1, a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium. Mol Gen Genet 249:162–167PubMedGoogle Scholar
  101. Thierry D, Vaucheret H (1996) Sequence homology requirements for transcriptional silencing of 35S transgenes and post-transcriptional silencing of nitrite reductase (trans) genes by the tobacco 271 locus. Plant Mol Biol 32:1075–1083PubMedGoogle Scholar
  102. Trail F, Mahanti N, et al (1995) Molecular biology of aflatoxin biosynthesis. Microbiology 141:755–765PubMedGoogle Scholar
  103. Turgeon BG, Lu S-W (2000) Evolution of host specific virulence in Cochliobolus heterostrophus. Kronstad JW (ed) Fungal pathology. Kluwer, Dordrecht, pp 93–126Google Scholar
  104. Walsh CT (2002) Combinatorial biosynthesis of antibiotics: challenges and opportunities. Chembiochem 3:125–134PubMedGoogle Scholar
  105. Watanabe A, Ebizuka Y (2002) A novel hexaketide naphthalene synthesized by a chimeric polyketide synthase composed of fungal pentaketide and heptaketide synthases. Tetrahedron Lett 43:843–846Google Scholar
  106. Watanabe A, Ebizuka Y (2004) Unprecedented mechanism of chain length determination in fungal aromatic polyketide synthases. Chem Biol 11:1101–1106PubMedGoogle Scholar
  107. Watanabe A, Ono Y, et al (1998) Product identification of polyketide synthase coded by Aspergillus nidulans wA gene. Tetrahedron Lett 39:7733–7736Google Scholar
  108. Watanabe A, Fujii I, et al (1999) Re-identification of Aspergillus nidulans wA gene to code for a polyketide synthase of naphthopyrone. Tetrahedron Lett 40:91–94Google Scholar
  109. Watanabe A, Fujii I, et al (2000) Aspergillus fumigatus alb1 encodes naphthopyrone synthase when expressed in Aspergillus oryzae. FEMS Microbiol Lett 192:39–44PubMedGoogle Scholar
  110. Watanabe CM, Townsend CA (2002) Initial characterization of a type I fatty acid synthase and polyketide synthase multienzyme complex NorS in the biosynthesis of aflatoxin B(1). Chem Biol 9:981–988PubMedGoogle Scholar
  111. Weber T, Welzel K, et al (2003) Exploiting the genetic potential of polyketide producing streptomycetes. J Biotechnol 106:221–232PubMedGoogle Scholar
  112. Witkowski A, Joshi AK, et al (2004) Characterization of the beta-carbon processing reactions of the mammalian cytosolic fatty acid synthase: role of the central core. Biochemistry 43:10458–10466PubMedGoogle Scholar
  113. Witter DJ, Vederas JC (1996) Putative Diels–Alder-catalyzed cyclization during the biosynthesis of lovastatin. J Org Chem 61:2613–2623PubMedGoogle Scholar
  114. Wright F, Bibb MJ (1992) Codon usage in the G+C-rich Streptomyces genome. Gene 113:55–65PubMedGoogle Scholar
  115. Xie X, Watanabe K, et al (2006) Biosynthesis of lovastatin analogs with a broadly specific acyltransferase. Chem Biol 13:1161–1169PubMedGoogle Scholar
  116. Yalpani N, Altier DJ, et al (2001) Production of 6-methylsalicylic acid by expression of a fungal polyketide synthase activates disease resistance in tobacco. Plant Cell 13:1401–1409PubMedGoogle Scholar
  117. Yang G, Rose MS, et al (1996) A polyketide synthase is required for fungal virulence and production of the polyketide T-toxin. Plant Cell 8:2139–2150PubMedGoogle Scholar
  118. Yoder OC (1980) Toxins in pathogenesis. Annu Rev Phytopathol 18:103–129Google Scholar
  119. Yoder OC, Macko V, et al (1997) Cochliobolus spp. and their host-specific toxins. In: Carroll G, Tudzynski P (eds) The Mycota, vol V. Springer, Heidelberg, pp 145–166Google Scholar
  120. Yu J, Leonard TJ (1995) Sterigmatocystin biosynthesis in Aspergillus nidulans requires a novel type I polyketide synthase. J Bacteriol 177:4792–800PubMedGoogle Scholar
  121. Yu J, Chang PK, et al (1995) Comparative mapping of aflatoxin pathway gene clusters in Aspergillus parasiticus and Aspergillus flavus. Appl Environ Microbiol 61:2365–2371PubMedGoogle Scholar
  122. Zawada RJ, Khosla C (1999) Heterologous expression, purification, reconstitution and kinetic analysis of an extended type II polyketide synthase. Chem Biol 6:607–615PubMedGoogle Scholar
  123. Zhang A, Lu P, et al (2003) Efficient disruption of a polyketide synthase gene (pks1) required for melanin synthesis through Agrobacterium-mediated transformation of Glarea lozoyensis. Mol Genet Genomics 268:645–655PubMedGoogle Scholar
  124. Zhang W, Watanabe K, et al (2007) Investigation of early tailoring reactions in the oxytetracycline biosynthetic pathway. J Biol Chem 282:25717–25725PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Leibniz Institute for Natural Product Research and Infection BiologyHKIJenaGermany

Personalised recommendations