Non-Ribosomal Peptide Synthetases of Fungi

  • Katrin Eisfeld
Part of the The Mycota book series (MYCOTA, volume 15)


Non-ribosomal peptide synthetases (NRPSs) are large enzymes which catalyze the assembly of a vast number of complex peptides which often possess interesting properties. The physiological role of non-ribosomally produced peptides is discussed and the organization of NRPSs in fungi is described. Fungal and bacterial NRPSs share the domain architecture typical for these enzymes, but differ in some aspects, which are summarized. A specific focus is put on non-ribosomal peptide synthesis in basidiomycetes, as very scarce information is available about NRPSs in these fungi to date. This chapter gives examples for NRPS gene clusters and cluster evolution. Finally, an outlook is presented on approaches to identify new NRPSs and on combinatorial biosynthesis of new peptides.


Ergot Alkaloid NRPS Gene Adenylation Domain Combinatorial Biosynthesis Condensation Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aharonowitz Y, Cohen G, Martin JF (1992) Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Annu Rev Microbiol 46:461–495PubMedGoogle Scholar
  2. Arnez JG, Augustine JG, Moras D, Francklyn CS (1997) The first step of aminoacylation at the atomic level in histidyl-tRNA synthetase. Proc Natl Acad Sci USA 94:7144–7149PubMedGoogle Scholar
  3. Bailey AM, Kershaw MJ, Hunt BA, Paterson IC, Charnley AK, Reynolds SE, Clarkson JM (1996) Cloning and sequence analysis of an intron-containing domain from a peptide synthetase-encoding gene of the entomopathogenic fungus Metarhizium anisopliae. Gene 173:195–197PubMedGoogle Scholar
  4. Balibar CJ, Walsh CT (2006) GliP, a multimodular nonribosomal peptide synthetase in Aspergillus fumigatus, makes the diketopiperazine scaffold of gliotoxin. Biochemistry 45:15029–15038PubMedGoogle Scholar
  5. Balibar CJ, Vaillancourt FH, Walsh CT (2005) Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. Chem Biol 12:1189–1200PubMedGoogle Scholar
  6. Balibar CJ, Howard-Jones AR, Walsh CT (2007) Terrequinone A biosynthesis through L-tryptophan oxidation, dimerization and bisprenylation. Nat Chem Biol 3:584–592PubMedGoogle Scholar
  7. Belshaw PJ, Walsh CT, Stachelhaus T (1999) Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science 284:486–489PubMedGoogle Scholar
  8. Bergmann S, Schumann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217PubMedGoogle Scholar
  9. Billich A, Zocher R (1987) Enzymatic synthesis of cyclosporine. A. J Biol Chem 262:17258–17259PubMedGoogle Scholar
  10. Bok JW, Keller NP (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 3:527–535PubMedGoogle Scholar
  11. Bok JW, Hoffmeister D, Maggio-Hall LA, Murillo R, Glasner JD, Keller NP (2006) Genomic mining for Aspergillus natural products. Chem Biol 13:31–37PubMedGoogle Scholar
  12. Bölker M, Basse CW, Schirawski J (2008) Ustilago maydis secondary metabolism – From genomics to biochemistry. Fungal Genet Biol 45:88–93Google Scholar
  13. Borel JF (1986) Cyclosporine forever? Transplant Proc 18:271–272PubMedGoogle Scholar
  14. Brakhage AA, Al-Abdallah Q, Tuncher A, Sprote P (2005) Evolution of beta-lactam biosynthesis genes and recruitment of trans-acting factors. Phytochemistry 66:1200–1210PubMedGoogle Scholar
  15. Brakhage AA, Schuemann J, Bergmann S, Scherlach K, Schroeckh V, Hertweck C (2008) Activation of fungal silent gene clusters: a new avenue to drug discovery. Prog Drug Res 66:3–12Google Scholar
  16. Budde AD, Leong SA (1989) Characterization of siderophores from Ustilago maydis. Mycopathologia 108:125–133PubMedGoogle Scholar
  17. Burmester J, Haese A, Zocher R (1995) Highly conserved N-methyltransferases as an integral part of peptide synthetases. Biochem Mol Biol Int 37:201–207PubMedGoogle Scholar
  18. Butterton JR, Choi MH, Watnick PI, Carroll PA, Calderwood SB (2000) Vibrio cholerae VibF is required for vibriobactin synthesis and is a member of the family of nonribosomal peptide synthetases. J Bacteriol 182:1731–1738PubMedGoogle Scholar
  19. Challis GL, Ravel J, Townsend CA (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7:211–224PubMedGoogle Scholar
  20. Cheng YQ, Walton JD (2000) A eukaryotic alanine racemase gene involved in cyclic peptide biosynthesis. J Biol Chem 275:4906–4911PubMedGoogle Scholar
  21. Chiang C, Karle IL, T W (1982) Unusual intramolecular hydrogen bonding in cycloamanide A, cyclic (LPro-LVal-LPhe-LPhe-LAla-Gly). A crystal structure analysis. Int J Pept Protein Res 20:414–412PubMedGoogle Scholar
  22. Chugh JK, Wallace BA (2001) Peptaibols: models for ion channels. Biochem Soc Trans 29:565–570PubMedGoogle Scholar
  23. Clugston SL, Sieber SA, Marahiel MA, Walsh CT (2003) Chirality of peptide bond-forming condensation domains in nonribosomal peptide synthetases: the C5 domain of tyrocidine synthetase is a (D)C(L) catalyst. Biochemistry 42:12095–12104PubMedGoogle Scholar
  24. Conti E, Stachelhaus T, Marahiel MA, Brick P (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16:4174–4183PubMedGoogle Scholar
  25. Correia T, Grammel N, Ortel I, Keller U, Tudzynski P (2003) Molecular cloning and analysis of the ergopeptine assembly system in the ergot fungus Claviceps purpurea. Chem Biol 10:1281–1292PubMedGoogle Scholar
  26. Coyle CM, Panaccione DG (2005) An ergot alkaloid biosynthesis gene and clustered hypothetical genes from Aspergillus fumigatus. Appl Environ Microbiol 71:3112–3118PubMedGoogle Scholar
  27. Cramer RA Jr, Stajich JE, Yamanaka Y, Dietrich FS, Steinbach WJ, Perfect JR (2006) Phylogenomic analysis of non-ribosomal peptide synthetases in the genus Aspergillus. Gene 383:24–32PubMedGoogle Scholar
  28. Damrongkool P, Sedlock AB, Young CA, Johnson RD, Goetz KE, Scott B, Schardl CL, Panaccione DG (2005) Structural analysis of a peptide synthetase gene required for ergopeptine production in the endophytic fungus Neotyphodium lolii. DNA Seq 16:379–385PubMedGoogle Scholar
  29. Daniel JF, Filho ER (2007) Peptaibols of Trichoderma. Nat Prod Rep 24:1128–1141PubMedGoogle Scholar
  30. De Crécy-Lagard V, Marlière P, Saurin W (1995) Multienzymatic non ribosomal peptide biosynthesis: identification of the functional domains catalysing peptide elongation and epimerisation. C R Acad Sci Ser C 318:927–936Google Scholar
  31. Dieckmann R, von Döhren H (1997) Structural model of acyl carrier domains in integrated biosynthetic systems forming peptides, polyketides and fatty acids based on analogy to the E. coli acyl carrier protein. In: Baltz RH, Hegeman GD and Skatrud PL (eds) Developments in industrial microbiology. Society for Industrial Microbiology, Fairfax, pp 79–87Google Scholar
  32. Dieckmann R, Lee YO, van Liempt H, von Dohren H, Kleinkauf H (1995) Expression of an active adenylate-forming domain of peptide synthetases corresponding to acyl-CoA-synthetases. FEBS Lett 357:212–216PubMedGoogle Scholar
  33. Dittmann J, Wenger RM, Kleinkauf H, Lawen A (1994) Mechanism of cyclosporin A biosynthesis. Evidence for synthesis via a single linear undecapeptide precursor. J Biol Chem 269:2841–2846PubMedGoogle Scholar
  34. Doekel S, Marahiel MA (2001) Biosynthesis of natural products on modular peptide synthetases. Metab Eng 3:64–77PubMedGoogle Scholar
  35. Eichhorn H, Lessing F, Winterberg B, Schirawski J, Kamper J, Muller P, Kahmann R (2006) A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis. Plant Cell 18:3332–3345PubMedGoogle Scholar
  36. Eisendle M, Oberegger H, Zadra I, Haas H (2003) The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding l-ornithine N 5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Mol Microbiol 49:359–375PubMedGoogle Scholar
  37. Eisendle M, Schrettl M, Kragl C, Muller D, Illmer P, Haas H (2006) The intracellular siderophore ferricrocin is involved in iron storage, oxidative-stress resistance, germination, and sexual development in Aspergillus nidulans. Eukaryot Cell 5:1596–1603PubMedGoogle Scholar
  38. Feifel SC, Schmiederer T, Hornbogen T, Berg H, Sussmuth RD, Zocher R (2007) In vitro synthesis of new enniatins: probing the alpha-D-hydroxy carboxylic acid binding pocket of the multienzyme enniatin synthetase. Chembiochem 8:1767–1770PubMedGoogle Scholar
  39. Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488PubMedGoogle Scholar
  40. Fleetwood DJ, Scott B, Lane GA, Tanaka A, Johnson RD (2007) A complex ergovaline gene cluster in epichloe endophytes of grasses. Appl Environ Microbiol 73:2571–2579PubMedGoogle Scholar
  41. Fleming A (1929) On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236Google Scholar
  42. Gardiner DM, Cozijnsen AJ, Wilson LM, Pedras MS, Howlett BJ (2004) The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans. Mol Microbiol 53:1307–1318PubMedGoogle Scholar
  43. Gebler JC, Poulter CD (1992) Purification and characterization of dimethylallyl tryptophan synthase from Claviceps purpurea. Arch Biochem Biophys 296:308–313PubMedGoogle Scholar
  44. Glinski M, Hornbogen T, Zocher R (2001) Enzymatic synthesis of fungal N-methylated cyclopeptides and depsipeptides. In: Kirst H, Yeh W-K, Zmijewski M (eds) Enzyme technologies for pharmaceutical and biotechnological applications. Dekker, New York, pp 471–497Google Scholar
  45. Glinski M, Urbanke C, Hornbogen T, Zocher R (2002) Enniatin synthetase is a monomer with extended structure: evidence for an intramolecular reaction mechanism. Arch Microbiol 178:267–273PubMedGoogle Scholar
  46. Guenzi E, Galli G, Grgurina I, Gross DC, Grandi G (1998) Characterization of the syringomycin synthetase gene cluster. A link between prokaryotic and eukaryotic peptide synthetases. J Biol Chem 273: 32857–32863PubMedGoogle Scholar
  47. Guillemette T, Sellam A, Simoneau P (2004) Analysis of a nonribosomal peptide synthetase gene from Alternaria brassicae and flanking genomic sequences. Curr Genet 45:214–224PubMedGoogle Scholar
  48. Guo S, Evans SA, Wilkes MB, Bhattacharjee JK (2001) Novel posttranslational activation of the LYS2-encoded alpha-aminoadipate reductase for biosynthesis of lysine and site-directed mutational analysis of conserved amino acid residues in the activation domain of Candida albicans. J Bacteriol 183:7120–7125PubMedGoogle Scholar
  49. Gutierrez S, Diez B, Montenegro E, Martin JF (1991) Characterization of the Cephalosporium acremonium pcbAB gene encoding alpha-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains. J Bacteriol 173:2354–2365PubMedGoogle Scholar
  50. Haarmann T, Machado C, Lubbe Y, Correia T, Schardl CL, Panaccione DG, Tudzynski P (2005) The ergot alkaloid gene cluster in Claviceps purpurea: extension of the cluster sequence and intra species evolution. Phytochemistry 66:1312–1320PubMedGoogle Scholar
  51. Haarmann T, Ortel I, Tudzynski P, Keller U (2006) Identification of the cytochrome P450 monooxygenase that bridges the clavine and ergoline alkaloid pathways. Chembiochem 7:645–652PubMedGoogle Scholar
  52. Haas H (2003) Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biotechnol 62:316–330PubMedGoogle Scholar
  53. Haas H, Eisendle M, Turgeon BG (2008) Siderophores in fungal physiology and virulence. Annu Rev Phytopathol 46:149–187PubMedGoogle Scholar
  54. Hacker C, Glinski M, Hornbogen T, Doller A, Zocher R (2000) Mutational analysis of the N-methyltransferase domain of the multifunctional enzyme enniatin synthetase. J Biol Chem 275:30826–30832PubMedGoogle Scholar
  55. Haese A, Schubert M, Herrmann M, Zocher R (1993) Molecular characterization of the enniatin synthetase gene encoding a multifunctional enzyme catalysing N-methyldepsipeptide formation in Fusarium scirpi. Mol Microbiol 7:905–914PubMedGoogle Scholar
  56. Hallen HE, Luo H, Scott-Craig JS, Walton JD (2007) Gene family encoding the major toxins of lethal Amanita mushrooms. Proc Natl Acad Sci USA 104:19097–19101PubMedGoogle Scholar
  57. He C, Rusu AG, Poplawski AM, Irwin JA, Manners JM (1998) Transfer of a supernumerary chromosome between vegetatively incompatible biotypes of the fungus Colletotrichum gloeosporioides. Genetics 150:1459–1466PubMedGoogle Scholar
  58. Herrmann M, Zocher R, Haese A (1996) Enniatin Production by Fusarium Strains and Its Effect on Potato Tuber Tissue. Appl Environ Microbiol 62:393–398PubMedGoogle Scholar
  59. Hof C, Eisfeld K, Welzel K, Antelo L, Foster AJ, Anke H (2007) Ferricrocin synthesis in Magnaporthe grisea and its role in pathogenicity in rice. Mol Plant Pathol 8:163–172PubMedGoogle Scholar
  60. Hoffmann K, Schneider-Scherzer E, Kleinkauf H, Zocher R (1994) Purification and characterization of eucaryotic alanine racemase acting as key enzyme in cyclosporin biosynthesis. J Biol Chem 269:12710–12714PubMedGoogle Scholar
  61. Hoffmeister D, Keller NP (2006) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24:393–416PubMedGoogle Scholar
  62. Hornbogen T, Riechers SP, Prinz B, Schultchen J, Lang C, Schmidt S, Mugge C, Turkanovic S, Sussmuth RD, Tauberger E, Zocher R (2007) Functional characterization of the recombinant N-methyltransferase domain from the multienzyme enniatin synthetase. Chembiochem 8:1048–1054PubMedGoogle Scholar
  63. Johnson LJ, Johnson RD, Akamatsu H, Salamiah A, Otani H, Kohmoto K, Kodama M (2001) Spontaneous loss of a conditionally dispensable chromosome from the Alternaria alternata apple pathotype leads to loss of toxin production and pathogenicity. Curr Genet 40:65–72PubMedGoogle Scholar
  64. Johnson R, Johnson L, Itoh Y, Kodama M, Otani H, Kohmoto K (2000) Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternata apple pathotype whose product is involved in AM-toxin synthesis and pathogenicity. Mol Plant Microbe Interact 13:742–753PubMedGoogle Scholar
  65. Johnson R, Voisey C, Johnson L, Pratt J, Fleetwood D, Khan A, Bryan G (2007) Distribution of NRPS gene families within the Neotyphodium/Epichloe complex. Fungal Genet Biol 44:1180–1190PubMedGoogle Scholar
  66. Jones MJ, Dunkle LD (1995) Virulence gene expression during conidial germination in Cochliobolus carbonum. Mol Plant Microbe Interact 8:476–479PubMedGoogle Scholar
  67. Kahan BD (1984) Cyclosporine: a powerful addition to the immunosuppressive armamentarium. Am J Kidney Dis 3:444–455PubMedGoogle Scholar
  68. Keating TA, Marshall CG, Walsh CT (2000a) Reconstitution and characterization of the Vibrio cholerae vibriobactin synthetase from VibB, VibE, VibF, and VibH. Biochemistry 39:15522–15530Google Scholar
  69. Keating TA, Marshall CG, Walsh CT (2000b) Vibriobactin biosynthesis in Vibrio cholerae: VibH is an amide synthase homologous to nonribosomal peptide synthetase condensation domains. Biochemistry 39: 15513–15521Google Scholar
  70. Keating TA, Ehmann DE, Kohli RM, Marshall CG, Trauger JW, Walsh CT (2001) Chain termination steps in nonribosomal peptide synthetase assembly lines: directed acyl-S-enzyme breakdown in antibiotic and siderophore biosynthesis. Chembiochem 2:99–107PubMedGoogle Scholar
  71. Keating TA, Marshall CG, Walsh CT, Keating AE (2002) The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains. Nat Struct Biol 9:522–526PubMedGoogle Scholar
  72. Keller NP, Hohn TM (1996) Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21:17–29Google Scholar
  73. Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol 3:937–947PubMedGoogle Scholar
  74. Keszenman-Pereyra D, Lawrence S, Twfieg ME, Price J, Turner G (2003) The npgA/ cfwA gene encodes a putative 4′-phosphopantetheinyl transferase which is essential for penicillin biosynthesis in Aspergillus nidulans. Curr Genet 43:186–190PubMedGoogle Scholar
  75. Khaldi N, Collemare J, Lebrun MH, Wolfe KH (2008) Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi. Genome Biol 9:R18PubMedGoogle Scholar
  76. Kim KH, Cho Y, La Rota M, Cramer RA, Lawrence CB (2007) Functional analysis of the Alternaria brassicicola non-ribosomal peptide synthetase gene AbNPS2 reveals a role in conidial cell wall construction. Molecular Plant Microbe Interactions 13:23–39Google Scholar
  77. Kim M, Han D-M, Chae K-S, Chae K-S, K-Y J (2001) Isolation and characterization of the npgA gene involved in pigment formation in Aspergillus nidulans. Fungal Genet News 1:48–52Google Scholar
  78. Kleinkauf H, von Dohren H (1995) The nonribosomal peptide biosynthetic system-on the origins of structural diversity of peptides, cyclopeptides and related compounds. Antonie Van Leeuwenhoek 67:229–242PubMedGoogle Scholar
  79. Kleinkauf H, Von Dohren H (1996) A nonribosomal system of peptide biosynthesis. Eur J Biochem 236: 335–351PubMedGoogle Scholar
  80. Komon-Zelazowska M, Neuhof T, Dieckmann R, von Dohren H, Herrera-Estrella A, Kubicek CP, Druzhinina IS (2007) Formation of atroviridin by Hypocrea atroviridis is conidiation associated and positively regulated by blue light and the G protein GNA3. Eukaryot Cell 6:2332–2342PubMedGoogle Scholar
  81. Konz D, Marahiel MA (1999) How do peptide synthetases generate structural diversity? Chem Biol 6:R39–R48PubMedGoogle Scholar
  82. Kopp F, Marahiel MA (2007) Where chemistry meets biology: the chemoenzymatic synthesis of nonribosomal peptides and polyketides. Curr Opin Biotechnol 18:513–520PubMedGoogle Scholar
  83. Krause M, Lindemann A, Glinski M, Hornbogen T, Bonse G, Jeschke P, Thielking G, Gau W, Kleinkauf H, Zocher R (2001) Directed biosynthesis of new enniatins. J Antibiot (Tokyo) 54:797–804Google Scholar
  84. Kronen M, Kleinwachter P, Schlegel B, Hartl A, Grafe U (2001) Ampullosporines B,C,D,E1,E2,E3 and E4 from Sepedonium ampullosporum HKI-0053: structures and biological activities. J Antibiot (Tokyo) 54:175–178Google Scholar
  85. Laich F, Fierro F, Cardoza RE, Martin JF (1999) Organization of the gene cluster for biosynthesis of penicillin in Penicillium nalgiovense and antibiotic production in cured dry sausages. Appl Environ Microbiol 65:1236–1240PubMedGoogle Scholar
  86. Laich F, Fierro F, Martin JF (2002) Production of penicillin by fungi growing on food products: identification of a complete penicillin gene cluster in Penicillium griseofulvum and a truncated cluster in Penicillium verrucosum. Appl Environ Microbiol 68:1211–1219PubMedGoogle Scholar
  87. Lambalot RH, Gehring AM, Flugel RS, Zuber P, LaCelle M, Marahiel MA, Reid R, Khosla C, Walsh CT (1996) A new enzyme superfamily – the phosphopantetheinyl transferases. Chem Biol 3:923–936PubMedGoogle Scholar
  88. Larrondo LF, Gonzalez B, Cullen D, Vicuna R (2004) Characterization of a multicopper oxidase gene cluster in Phanerochaete chrysosporium and evidence of altered splicing of the mco transcripts. Microbiology 150:2775–2783PubMedGoogle Scholar
  89. Lautru S, Challis GL (2004) Substrate recognition by nonribosomal peptide synthetase multi-enzymes. Microbiology 150:1629–1636PubMedGoogle Scholar
  90. Lawen A, Traber R (1993) Substrate specificities of cyclosporin synthetase and peptolide SDZ 214-103 synthetase. Comparison of the substrate specificities of the related multifunctional polypeptides. J Biol Chem 268:20452–20465PubMedGoogle Scholar
  91. Lawen A, Zocher R (1990) Cyclosporin synthetase. The most complex peptide synthesizing multienzyme polypeptide so far described. J Biol Chem 265:11355–11360PubMedGoogle Scholar
  92. Lawen A, Traber R, Geyl D, Zocher R, Kleinkauf H (1989) Cell-free biosynthesis of new cyclosporins. J Antibiot (Tokyo) 42:1283–1289Google Scholar
  93. Lee BN, Kroken S, Chou DY, Robbertse B, Yoder OC, Turgeon BG (2005) Functional analysis of all nonribosomal peptide synthetases in Cochliobolus heterostrophus reveals a factor, NPS6, involved in virulence and resistance to oxidative stress. Eukaryot Cell 4:545–555PubMedGoogle Scholar
  94. Lee C, Gorisch H, Kleinkauf H, Zocher R (1992) A highly specific D-hydroxyisovalerate dehydrogenase from the enniatin producer Fusarium sambucinum. J Biol Chem 267:11741–11744PubMedGoogle Scholar
  95. Lehr NA, Meffert A, Antelo L, Sterner O, Anke H, Weber RW (2006) Antiamoebins, myrocin B and the basis of antifungal antibiosis in the coprophilous fungus Stilbella erythrocephala (syn. S. fimetaria). FEMS Microbiol Ecol 55:105–112PubMedGoogle Scholar
  96. Liebermann B, Ramm K (1991) N-methylation in the biosynthesis of the phytotoxin tentoxin. Phytochemistry 30:1815–1817Google Scholar
  97. Linne U, Doekel S, Marahiel MA (2001) Portability of epimerization domain and role of peptidyl carrier protein on epimerization activity in nonribosomal peptide synthetases. Biochemistry 40:15824–15834PubMedGoogle Scholar
  98. Liras P, Martin JF (2006) Gene clusters for beta-lactam antibiotics and control of their expression: why have clusters evolved, and from where did they originate? Int Microbiol 9:9–19PubMedGoogle Scholar
  99. Lorenz N, Wilson EV, Machado C, Schardl CL, Tudzynski P (2007) Comparison of ergot alkaloid biosynthesis gene clusters in Claviceps species indicates loss of late pathway steps in evolution of C. fusiformis. Appl Environ Microbiol 73:7185–7191PubMedGoogle Scholar
  100. Lorenzen K, Anke T (1998) Basidiomycetes as a source for new bioactive natural products. Curr Org Chem 2:329–364Google Scholar
  101. MacCabe AP, Riach MB, Unkles SE, Kinghorn JR (1990) The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. EMBO J 9:279–287PubMedGoogle Scholar
  102. Madry N, Zocher R, Grodzki K, Kleinkauf H (1984) Selective synthesis of depsipeptides by the immobilized multienzyme enniatin synthetase. Appl Microbiol Biotechnol 20:83–86Google Scholar
  103. Maiya S, Grundmann A, Li SM, Turner G (2006) The fumitremorgin gene cluster of Aspergillus fumigatus: identification of a gene encoding brevianamide F synthetase. Chembiochem 7:1062–1069PubMedGoogle Scholar
  104. Marahiel MA (1997) Protein templates for the biosynthesis of peptide antibiotics. Chem Biol 4:561–567PubMedGoogle Scholar
  105. Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2674PubMedGoogle Scholar
  106. Marquez-Fernandez O, Trigos A, Ramos-Balderas JL, Viniegra-Gonzalez G, Deising HB, Aguirre J (2007) Phosphopantetheinyl transferase CfwA/NpgA is required for Aspergillus nidulans secondary metabolism and asexual development. Eukaryot Cell 6:710–720PubMedGoogle Scholar
  107. Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700PubMedGoogle Scholar
  108. May JJ, Kessler N, Marahiel MA, Stubbs MT (2002) Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc Natl Acad Sci USA 99:12120–12125PubMedGoogle Scholar
  109. Mootz HD, Marahiel MA (1997) Biosynthetic systems for nonribosomal peptide antibiotic assembly. Curr Opin Chem Biol 1:543–551PubMedGoogle Scholar
  110. Mootz HD, Schwarzer D, Marahiel MA (2000) Construction of hybrid peptide synthetases by module and domain fusions. Proc Natl Acad Sci USA 97: 5848–5853PubMedGoogle Scholar
  111. Mootz HD, Schorgendorfer K, Marahiel MA (2002a) Functional characterization of 4′-phosphopantetheinyl transferase genes of bacterial and fungal origin by complementation of Saccharomyces cerevisiae lys5. FEMS Microbiol Lett 213:51–57Google Scholar
  112. Mootz HD, Schwarzer D, Marahiel MA (2002b) Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chembiochem 3:490–504Google Scholar
  113. Nakano MM, Xia LA, Zuber P (1991) Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis. J Bacteriol 173:5487–5493PubMedGoogle Scholar
  114. Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, Garcia JL, Garcia MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang J, Humphray S, Jimenez J, Keller N, Khouri H, Kitamoto K, Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafon A, Latge JP, Li W, Lord A, Lu C, Majoros WH, May GS, Miller BL, Mohamoud Y, Molina M, Monod M, Mouyna I, Mulligan S, Murphy L, O'Neil S, Paulsen I, Penalva MA, Pertea M, Price C, Pritchard BL, Quail MA, Rabbinowitsch E, Rawlins N, Rajandream MA, Reichard U, Renauld H, Robson GD, Rodriguez de Cordoba S, Rodriguez-Pena JM, Ronning CM, Rutter S, Salzberg SL, Sanchez M, Sanchez-Ferrero JC, Saunders D, Seeger K, Squares R, Squares S, Takeuchi M, Tekaia F, Turner G, Vazquez de Aldana CR, Weidman J, White O, Woodward J, Yu JH, Fraser C, Galagan JE, Asai K, Machida M, Hall N, Barrell B, Denning DW (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156PubMedGoogle Scholar
  115. Oberegger H, Eisendle M, Schrettl M, Graessle S, Haas H (2003) 4′-phosphopantetheinyl transferase-encoding npgA is essential for siderophore biosynthesis in Aspergillus nidulans. Curr Genet 44:211–215PubMedGoogle Scholar
  116. Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG (2006) NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18:2836–2853PubMedGoogle Scholar
  117. Oide S, Krasnoff SB, Gibson DM, Turgeon BG (2007) Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae. Eukaryot Cell 6:1339–1353PubMedGoogle Scholar
  118. Panaccione DG, Scott-Craig JS, Pocard JA, Walton JD (1992) A cyclic peptide synthetase gene required for pathogenicity of the fungus Cochliobolus carbonum on maize. Proc Natl Acad Sci USA 89:6590–6594PubMedGoogle Scholar
  119. Panaccione DG, Cipoletti JR, Sedlock AB, Blemings KP, Schardl CL, Machado C, Seidel GE (2006) Effects of ergot alkaloids on food preference and satiety in rabbits, as assessed with gene-knockout endophytes in perennial ryegrass (Lolium perenne). J Agric Food Chem 54:4582–4587PubMedGoogle Scholar
  120. Patron NJ, Waller RF, Cozijnsen AJ, Straney DC, Gardiner DM, Nierman WC, Howlett BJ (2007) Origin and distribution of epipolythiodioxopiperazine (ETP) gene clusters in filamentous ascomycetes. BMC Evol Biol 7:174–189PubMedGoogle Scholar
  121. Pazirandeh M, Chirala SS, Wakil SJ (1991) Site-directed mutagenesis studies on the recombinant thioesterase domain of chicken fatty acid synthase expressed in Escherichia coli. J Biol Chem 266:20946–20952PubMedGoogle Scholar
  122. Peeters H, Zocher R, Kleinkauf H (1988) Synthesis of beauvericin by a multifunctional enzyme. J Antibiot (Tokyo) 41:352–359Google Scholar
  123. Pieper R, Haese A, Schroder W, Zocher R (1995) Arrangement of catalytic sites in the multifunctional enzyme enniatin synthetase. Eur J Biochem 230:119–126PubMedGoogle Scholar
  124. Rausch C, Hoof I, Weber T, Wohlleben W, Huson DH (2007) Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol Biol 7:78PubMedGoogle Scholar
  125. Reiber K, Reeves EP, Neville CM, Winkler R, Gebhardt P, Kavanagh K, Doyle S (2005) The expression of selected non-ribosomal peptide synthetases in Aspergillus fumigatus is controlled by the availability of free iron. FEMS Microbiol Lett 248:83–91PubMedGoogle Scholar
  126. Reuter K, Mofid MR, Marahiel MA, Ficner R (1999) Crystal structure of the surfactin synthetase-activating enzyme sfp: a prototype of the 4′-phosphopantetheinyl transferase superfamily. EMBO J 18:6823–6831PubMedGoogle Scholar
  127. Riederer B, Han M, Keller U (1996) D-Lysergyl peptide synthetase from the ergot fungus Claviceps purpurea. J Biol Chem 271:27524–27530PubMedGoogle Scholar
  128. Roskoski R Jr, Kleinkauf H, Gevers W, Lipmann F (1970) Isolation of enzyme-bound peptide intermediates in tyrocidine biosynthesis. Biochemistry 9:4846–4851PubMedGoogle Scholar
  129. Roy SW, Gilbert W (2006) The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7:211–221PubMedGoogle Scholar
  130. Samel SA, Wagner B, Marahiel MA, Essen LO (2006) The thioesterase domain of the fengycin biosynthesis cluster: a structural base for the macrocyclization of a non-ribosomal lipopeptide. J Mol Biol 359:876–889PubMedGoogle Scholar
  131. Santi DV, Webster RW Jr, Cleland WW (1974) Kinetics of aminoacyl-tRNA synthetases catalyzed ATP-PPi exchange. Methods Enzymol 29:620–627PubMedGoogle Scholar
  132. Schardl CL, Panaccione DG, Tudzynski P (2006) Ergot alkaloids – biology and molecular biology. Alkaloids Chem Biol 63:45–86PubMedGoogle Scholar
  133. Schauwecker F, Pfennig F, Grammel N, Keller U (2000) Construction and in vitro analysis of a new bi-modular polypeptide synthetase for synthesis of N-methylated acyl peptides. Chem Biol 7:287–297PubMedGoogle Scholar
  134. Schneider A, Marahiel MA (1998) Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Arch Microbiol 169:404–410PubMedGoogle Scholar
  135. Schrettl M, Bignell E, Kragl C, Sabiha Y, Loss O, Eisendle M, Wallner A, Arst HN Jr, Haynes K, Haas H (2007) Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog 3:1195–1207PubMedGoogle Scholar
  136. Schwarzer D, Marahiel MA (2001) Multimodular biocatalysts for natural product assembly. Naturwissenschaften 88:93–101PubMedGoogle Scholar
  137. Schwarzer D, Finking R, Marahiel MA (2003) Nonribosomal peptides: from genes to products. Nat Prod Rep 20:275–287PubMedGoogle Scholar
  138. Schwecke T, Gottling K, Durek P, Duenas I, Kaufer NF, Zock-Emmenthal S, Staub E, Neuhof T, Dieckmann R, von Döhren H (2006) Nonribosomal peptide synthesis in Schizosaccharomyces pombe and the architectures of ferrichrome-type siderophore synthetases in fungi. Chembiochem 7:612–622PubMedGoogle Scholar
  139. Scott-Craig JS, Panaccione DG, Pocard JA, Walton JD (1992) The cyclic peptide synthetase catalyzing HC-toxin production in the filamentous fungus Cochliobolus carbonum is encoded by a 15.7-kilobase open reading frame. J Biol Chem 267:26044–26049PubMedGoogle Scholar
  140. Shaw-Reid CA, Kelleher NL, Losey HC, Gehring AM, Berg C, Walsh CT (1999) Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization. Chem Biol 6:385–400PubMedGoogle Scholar
  141. Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105:715–738PubMedGoogle Scholar
  142. Silakowski B, Kunze B, Nordsiek G, Blocker H, Hofle G, Muller R (2000) The myxochelin iron transport regulon of the myxobacterium Stigmatella aurantiaca Sg a15. Eur J Biochem 267:6476–6485PubMedGoogle Scholar
  143. Smith DJ, Earl AJ, Turner G (1990) The multifunctional peptide synthetase performing the first step of penicillin biosynthesis in Penicillium chrysogenum is a 421,073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases. Embo J 9:2743–2750PubMedGoogle Scholar
  144. Stachelhaus T, Marahiel MA (1995) Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiol Lett 125:3–14PubMedGoogle Scholar
  145. Stachelhaus T, Walsh CT (2000) Mutational analysis of the epimerization domain in the initiation module PheATE of gramicidin S synthetase. Biochemistry 39:5775–5787PubMedGoogle Scholar
  146. Stachelhaus T, Huser A, Marahiel MA (1996) Biochemical characterization of peptidyl carrier protein (PCP), the thiolation domain of multifunctional peptide synthetases. Chem Biol 3:913–921PubMedGoogle Scholar
  147. Stachelhaus T, Mootz HD, Bergendahl V, Marahiel MA (1998) Peptide bond formation in nonribosomal peptide biosynthesis. Catalytic role of the condensation domain. J Biol Chem 273:22773–22781PubMedGoogle Scholar
  148. Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505PubMedGoogle Scholar
  149. Stack D, Neville C, Doyle S (2007) Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi. Microbiology 153:1297–1306PubMedGoogle Scholar
  150. Stein T, Vater J, Kruft V, Otto A, Wittmann-Liebold B, Franke P, Panico M, McDowell R, Morris HR (1996) The multiple carrier model of nonribosomal peptide biosynthesis at modular multienzymatic templates. J Biol Chem 271:15428–15435PubMedGoogle Scholar
  151. Sterner O, Etzel W, A M, Anke H (1997) Omphalotin, a new cyclic peptide with potent nematicidal activity from Omphalotus olearius. II. Isolation and structure determination. Nat Prod Lett 10:33–38Google Scholar
  152. Talal N (1988) Cyclosporine as an immunosuppressive agent for autoimmune disease: theoretical concepts and therapeutic strategies. Transplant Proc 20:11–15PubMedGoogle Scholar
  153. Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57: 1036–1050PubMedGoogle Scholar
  154. Taylor JW, Berbee ML (2006) Dating divergences in the Fungal Tree of Life: review and new analyses. Mycologia 98:838–849PubMedGoogle Scholar
  155. Tobiasen C, Aahman J, Ravnholt KS, Bjerrum MJ, Grell MN, Giese H (2007) Nonribosomal peptide synthetase (NPS) genes in Fusarium graminearum, F. culmorum and F. pseudograminearium and identification of NPS2 as the producer of ferricrocin. Curr Genet 51:43–58PubMedGoogle Scholar
  156. Traber R, Hofmann H, Kobel H (1989) Cyclosporins-new analogues by precursor directed biosynthesis. J Antibiot (Tokyo) 42:591–597Google Scholar
  157. Tsai HF, Wang H, Gebler JC, Poulter CD, Schardl CL (1995) The Claviceps purpurea gene encoding dimethylallyltryptophan synthase, the committed step for ergot alkaloid biosynthesis. Biochem Biophys Res Commun 216:119–125PubMedGoogle Scholar
  158. Tudzynski P, Holter K, Correia T, Arntz C, Grammel N, Keller U (1999) Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol Gen Genet 261:133–141PubMedGoogle Scholar
  159. Turgeon BG, Oide S, Bushley K (2008) Creating and screening Cochliobolus heterostrophus non-ribosomal peptide synthetase mutants. Mycol Res 112:200–206PubMedGoogle Scholar
  160. Varga J, Kocsube S, Toth B, Mesterhazy A (2005) Nonribosomal peptide synthetase genes in the genome of Fusarium graminearum, causative agent of wheat head blight. Acta Biol Hung 56:375–388PubMedGoogle Scholar
  161. Vetter J (1998) Toxins of Amanita phalloides. Toxicon 36:13–24PubMedGoogle Scholar
  162. von Döhren H (2004) Biochemistry and general genetics of nonribosomal peptide synthetases in fungi. Adv Biochem Eng Biotechnol 88:217–264Google Scholar
  163. von Döhren H, Keller U, Vater J, Zocher R (1997) Multifunctional peptide synthetases. Chem Rev 97: 2675–2706Google Scholar
  164. von Döhren H, Dieckmann R, Pavela-Vrancic M (1999) The nonribosomal code. Chem Biol 6:273–279Google Scholar
  165. Walton JD (2000) Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet Biol 30:167–171PubMedGoogle Scholar
  166. Walton JD, Panaccione DG, Hallen HE (2004) Peptide synthesis without ribosomes. Adv Fungal Biotechnol Ind Agric Med 1:127–162Google Scholar
  167. Walzel B, Riederer B, Keller U (1997) Mechanism of alkaloid cyclopeptide synthesis in the ergot fungus Claviceps purpurea. Chem Biol 4:223–230PubMedGoogle Scholar
  168. Wang C, Skrobek A, Butt TM (2003) Concurrence of losing a chromosome and the ability to produce destruxins in a mutant of Metarhizium anisopliae. FEMS Microbiol Lett 226:373–378PubMedGoogle Scholar
  169. Wang J, Machado C, Panaccione DG, Tsai HF, Schardl CL (2004) The determinant step in ergot alkaloid biosynthesis by an endophyte of perennial ryegrass. Fungal Genet Biol 41:189–198PubMedGoogle Scholar
  170. Weber G, Schorgendorfer K, Schneider-Scherzer E, Leitner E (1994) The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame. Curr Genet 26:120–125PubMedGoogle Scholar
  171. Weber T, Marahiel MA (2001) Exploring the domain structure of modular nonribosomal peptide synthetases. Structure 9:R3–R9PubMedGoogle Scholar
  172. Weber T, Baumgartner R, Renner C, Marahiel MA, Holak TA (2000) Solution structure of PCP, a prototype for the peptidyl carrier domains of modular peptide synthetases. Structure 8:407–418PubMedGoogle Scholar
  173. Weckwerth W, Miyamoto K, Iinuma K, Krause M, Glinski M, Storm T, Bonse G, Kleinkauf H, Zocher R (2000) Biosynthesis of PF1022A and related cyclooctadepsipeptides. J Biol Chem 275:17909–17915PubMedGoogle Scholar
  174. Wei L, Steiner JP, Hamilton GS, Wu YQ (2004) Synthesis and neurotrophic activity of nonimmunosuppressant cyclosporin A derivatives. Bioorg Med Chem Lett 14:4549–4551PubMedGoogle Scholar
  175. Weigel BJ, Burgett SG, Chen VJ, Skatrud PL, Frolik CA, Queener SW, Ingolia TD (1988) Cloning and expression in Escherichia coli of isopenicillin N synthetase genes from Streptomyces lipmanii and Aspergillus nidulans. J Bacteriol 170:3817–3826PubMedGoogle Scholar
  176. Welzel K (2005) Molekularbiologische Untersuchungen zur nicht-ribosomalen Peptidsynthese in Omphalotus olearius. Dissertation, Technische Universität KaiserslauternGoogle Scholar
  177. Welzel K, Eisfeld K, Antelo L, Anke T, Anke H (2005) Characterization of the ferrichrome A biosynthetic gene cluster in the homobasidiomycete Omphalotus olearius. FEMS Microbiol Lett 249:157–163PubMedGoogle Scholar
  178. Whitmore L, Wallace BA (2004) The Peptaibol Database: a database for sequences and structures of naturally occurring peptaibols. Nucleic Acids Res 32:D593–D594PubMedGoogle Scholar
  179. Wiest A, Grzegorski D, Xu BW, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem 277:20862–20868PubMedGoogle Scholar
  180. Wilkinson B, Micklefield J (2007) Mining and engineering natural-product biosynthetic pathways. Nat Chem Biol 3:379–386PubMedGoogle Scholar
  181. Wyckoff EE, Smith SL, Payne SM (2001) VibD and VibH are required for late steps in vibriobactin biosynthesis in Vibrio cholerae. J Bacteriol 183:1830–1834PubMedGoogle Scholar
  182. Yuan WM, Gentil GD, Budde AD, Leong SA (2001) Characterization of the Ustilago maydis sid2 gene, encoding a multidomain peptide synthetase in the ferrichrome biosynthetic gene cluster. J Bacteriol 183:4040–4051PubMedGoogle Scholar
  183. Zaleta-Rivera K, Xu C, Yu F, Butchko RA, Proctor RH, Hidalgo-Lara ME, Raza A, Dussault PH, Du L (2006) A bidomain nonribosomal peptide synthetase encoded by FUM14 catalyzes the formation of tricarballylic esters in the biosynthesis of fumonisins. Biochemistry 45:2561–2569PubMedGoogle Scholar
  184. Zhang JH, Quigley NB, Gross DC (1995) Analysis of the syrB and syrC genes of Pseudomonas syringae pv. syringae indicates that syringomycin is synthesized by a thiotemplate mechanism. J Bacteriol 177:4009–4020PubMedGoogle Scholar
  185. Zocher R, Keller U (1997) Thiol template peptide synthesis systems in bacteria and fungi. Adv Microb Physiol 38:85–131PubMedGoogle Scholar
  186. Zocher R, Keller U, Kleinkauf H (1982) Enniatin synthetase, a novel type of multifunctional enzyme catalyzing depsipeptide synthesis in Fusarium oxysporum. Biochemistry 21:43–48PubMedGoogle Scholar
  187. Zocher R, Keller U, Kleinkauf H (1983) Mechanism of depsipeptide formation catalyzed by enniatin synthetase. Biochem Biophys Res Commun 110:292–299PubMedGoogle Scholar
  188. Zocher R, Nihira T, Paul E, Madry N, Peeters H, Kleinkauf H, Keller U (1986) Biosynthesis of cyclosporin A: partial purification and properties of a multifunctional enzyme from Tolypocladium inflatum. Biochemistry 25:550–553PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute of Biotechnology and Drug ResearchKaiserslauternGermany

Personalised recommendations