The Rationale Behind Seeking Inspiration from Nature

Part of the Studies in Computational Intelligence book series (SCI, volume 193)


There are currently numerous heuristic algorithms for combinatorial optimisation problems which are commonly described as nature-inspired. Parallels can certainly be drawn between these algorithms and various natural processes, but the extent of the natural inspiration is not always clear. This chapter attempts to clarify what it means to say an algorithm is nature-inspired. Additionally, we will discuss the features of nature which make it a valuable resource in the design of successful new algorithms. Not only does nature provide processes which can be used for optimisation, but it is also a popular source of useful metaphors, which assist the designer. Finally, the history of some well-known algorithms will be discussed, with particular attention to the role nature has played in their development.


Genetic Algorithm Natural Selection Evolutionary Algorithm Fossil Record Evolutionary Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, T.H.: (physio)logical circuits: The intellectual origins of the mcculloch–pitts neural networks. Journal of the History of the Behavioral Sciences 38(1), 3–25 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Angus, D.: Ant colony optimisation: From biological inspiration to an algorithmic framework. Tech. rep., Swinburne University of Technology (2006)Google Scholar
  3. 3.
    Arbib, M.: Artificial intelligence and brain theory: Unities and diversities. Annals of Biomedical Engineering 3(3), 238–274 (1975)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Atmar, W.: Notes on the simulation of evolution. Neural Networks, IEEE Transactions on 5(1), 130–147 (1994)CrossRefGoogle Scholar
  5. 5.
    Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation 1(1), 1–23 (1993)CrossRefGoogle Scholar
  6. 6.
    Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Empirical investigation of starling flocks: a benchmark study in collective animal behaviour. Animal behaviour 76, 201–215 (2008)CrossRefGoogle Scholar
  7. 7.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Physics Reports-Review Section of Physics Letters 424(4-5), 175–308 (2006)MathSciNetGoogle Scholar
  8. 8.
    Boettcher, S., Percus, A.: Nature’s way of optimizing. Artificial Intelligence 119(1-2), 275–286 (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    Bohm, D., Peat, D.: Science, Order, and Creativity. Routledge (2000)Google Scholar
  10. 10.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Inspiration for optimization from social insect behaviour. Nature 406(6791), 39–42 (2000)CrossRefGoogle Scholar
  11. 11.
    Box, G.E.P.: Evolutionary operation: A method for increasing industrial productivity. Applied Statistics 6(2), 81–101 (1957)CrossRefGoogle Scholar
  12. 12.
    Bremermann, H.J., Rogson, M., Salaff, S.: Global properties of evolution processes. In: Fogel, D.B. (ed.) Evolutionary Computation: The Fossil Record, pp. 314–352. Wiley/ IEEE Press (1998)Google Scholar
  13. 13.
    de Castro, L.N.: Fundamentals of natural computing: an overview. Physics of Life Reviews 4(1), 1–36 (2007)CrossRefGoogle Scholar
  14. 14.
    Coello, C.A.C., Cortés, N.C.: Solving multiobjective optimization problems using an artificial immune system. Genetic Programming and Evolvable Machines 6(2), 163–190 (2005)CrossRefGoogle Scholar
  15. 15.
    Cordón, O., Herrera, F., Stützle, T.: A review of the ant colony optimization metaheuristic: Basis, models and new trends. Mathware & Soft Computing 9, 141–175 (2002)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Crosby, J.L.: Computers in the study of evolution. In: Fogel, D.B. (ed.) Evolutionary Computation: The Fossil Record, pp. 230–254. Wiley/ IEEE Press (1998)Google Scholar
  17. 17.
    Darwin, C.: The Origin of Species. Avenel Books (1979)Google Scholar
  18. 18.
    Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M.: The self-organizing exploratory pattern of the argentine ant. Journal of Insect Behavior 3(2), 159–168 (1990)CrossRefGoogle Scholar
  19. 19.
    Dobzhansky, T.: Biology, molecular and organismic. American Zoologist 4, 443–452 (1964)Google Scholar
  20. 20.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics 26(1), 29–41 (1996)CrossRefGoogle Scholar
  21. 21.
    Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., May, A.: Neuroplasticity: Changes in grey matter induced by training - newly honed juggling skills show up as a transient feature on a brain-imaging scan. Nature 427(6972), 311–312 (2004)CrossRefGoogle Scholar
  22. 22.
    El-Hani, C.N., Emmeche, C.: On some theoretical grounds for an organism-centered biology: Property emergence, supervenience, and downward causation. Theory in Biosciences 119(3-4), 234–275 (2000)CrossRefGoogle Scholar
  23. 23.
    Flake, G.W.: The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation. MIT Press, Cambridge (2000)Google Scholar
  24. 24.
    Fogel, D.B.: Evolutionary programming–an introduction and some curent directions. Statistics and Computing 4(2), 113–129 (1994)CrossRefGoogle Scholar
  25. 25.
    Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks 5(1), 3–14 (1994)CrossRefGoogle Scholar
  26. 26.
    Fogel, D.B. (ed.): Evolutionary Computation: The Fossil Record. Wiley-IEEE Press (1998)Google Scholar
  27. 27.
    Fogel, D.B.: What is evolutionary computation? Spectrum, IEEE 37(2), 26, 28–32 (2000)MathSciNetGoogle Scholar
  28. 28.
    Fogel, D.B.: In memoriam Alex S. Fraser [1923-2002]. IEEE Transactions on Evolutionary Computation 6(5), 429–430 (2002)CrossRefGoogle Scholar
  29. 29.
    Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial intelligence through a simulation of evolution. In: Fogel, D.B. (ed.) Evolutionary Computation: The Fossil Record, pp. 230–254. Wiley/ IEEE Press (1998)Google Scholar
  30. 30.
    Fraser, A.S.: Monte carlo analyses of genetic models. Nature 181, 208–209 (1958)CrossRefGoogle Scholar
  31. 31.
    Heppner, F., Grenander, U.: A stochastic nonlinear model for coordinated bird flocks. In: The Ubiquity of chaos, Washington, D.C, AAAS (1990)Google Scholar
  32. 32.
    Holland, J.H.: Adaptation in natural and artificial systems, 3rd edn. MIT Press, Cambridge (1992)Google Scholar
  33. 33.
    Holland, J.H.: Genetic algorithms. Scientific American 267, 66–72 (1992)CrossRefGoogle Scholar
  34. 34.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79, 2554–2558 (1982)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Hopfield, J.J., Tank, D.W.: Neural computation of decisions in optimization problems. Biological Cybernetics 52(3), 141–152 (1985)zbMATHMathSciNetGoogle Scholar
  36. 36.
    Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)CrossRefGoogle Scholar
  37. 37.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  38. 38.
    Koch, C., Laurent, G.: Complexity and the nervous system. Science 284(5411), 96–98 (1999)CrossRefGoogle Scholar
  39. 39.
    Lotka, A.J.: Contribution to the energetics of evolution. Proceedings of the National Academy of Sciences of the United States of America 8(6), 147–151 (1922)CrossRefGoogle Scholar
  40. 40.
    McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology 5(4), 115–133 (1943)zbMATHMathSciNetGoogle Scholar
  41. 41.
    Perkins, D.: Archimedes’ Bathtub. W.W. Norton & Company (2000)Google Scholar
  42. 42.
    Poggio, T., Torre, V., Koch, C.: Computational vision and regularization theory. Nature 317(6035), 314–319 (1985)CrossRefGoogle Scholar
  43. 43.
    Rechenberg, I.: Cybernetic solution path of an experimental problem. In: Fogel, D.B. (ed.) Evolutionary Computation: The Fossil Record. Wiley/ IEEE Press (1998)Google Scholar
  44. 44.
    Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. SIGGRAPH Comput. Graph 21(4), 25–34 (1987)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Rizzolatti, G., Craighero, L.: The mirror-neuron system. Annual review of neuroscience 27, 169–192 (2004)CrossRefGoogle Scholar
  46. 46.
    Rogers, D.: Weather prediction using a genetic memory. Tech. rep., Research Institute for Advance Computer Science, NASA Ames Research Center (1990)Google Scholar
  47. 47.
    Schwefel, H.P.: Deep insight from simple models of evolution. Biosystems 64(1-3), 189–198 (2002)CrossRefGoogle Scholar
  48. 48.
    Simonton, D.K.: Creativity in Science. Cambridge University Press, Cambridge (2004)Google Scholar
  49. 49.
    Smith, J.E.: Coevolving memetic algorithms: A review and progress report. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics 37(1), 6–17 (2007)CrossRefGoogle Scholar
  50. 50.
    Smith, K.A.: Neural networks for combinatorial optimization: a review of more than a decade of research. INFORMS J. on Computing 11(1), 15–34 (1999)zbMATHCrossRefGoogle Scholar
  51. 51.
    Smith, T., Husbands, P., Layzell, P., O’Shea, M.: Fitness landscapes and evolvability. Evolutionary Computation 10(1), 1–34 (2002)CrossRefGoogle Scholar
  52. 52.
    Whitacre, J.M., Sarker, R.A., Pham, Q.T.: The self-organization of interaction networks for nature-inspired optimization. IEEE Transactions on Evolutionary Computation 12(2), 220–230 (2008)CrossRefGoogle Scholar
  53. 53.
    Wilson, E.O.: The Diversity of Life. Belknap Press of Harvard University Press, Cambridge (1992)Google Scholar
  54. 54.
    Wolpert, D.H., MacReady, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)CrossRefGoogle Scholar
  55. 55.
    Wright, S.: Evolution in mendelian populations. Bulletin of Mathematical Biology 52(1), 241–295 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe University of MelbourneVictoriaAustralia

Personalised recommendations