The Minimum Number of Sensors – Interpolation of Spatial Temperature Profiles in Chilled Transports

  • Reiner Jedermann
  • Walter Lang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5432)


Wireless sensor networks are an important tool for the supervision of cool chains. Previous research with a high number of measurement points revealed spatial temperature deviations of more than 5 °C in chilled transport, but the number of sensors has to be reduced to an economically useful value for use in regular transport. This paper presents a method to estimate the minimum number of sensors and to compare different sensor positioning strategies. Different methods of interpolating the temperature data of intermediate positions were applied to the experimental data from a delivery truck. The average prediction error for intermediate points was estimated as a function of the number of sensors. The Kriging method, originally developed for the interpolation of geostatistical data, produced the best results.


Wireless sensor networks Food logistics Kriging Information Processing Temperature mapping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scheer, P.P.: Optimising supply chains using traceability systems. In: Smith, I., Furness, A. (eds.) Improving traceability in food processing and distribution, pp. 52–64. Woodhead publishing limited Cambridge, England (2006)CrossRefGoogle Scholar
  2. 2.
    Koutsoumani, K., Taoukis, P.S., Nychas, G.J.E.: Development of a safety monitoring and assurance system for chilled food products. International Journal of Food microbiology 100(1-3), 253–260 (2005)CrossRefGoogle Scholar
  3. 3.
    Tsironi, T., Gogou, E., Taoukis, P.: Chill chain management and shelf life optimization of MAP seabream fillets: A TTI based alternative to FIFO. In: Kreyenschmidt, J. (ed.) 3rd International Workshop on Coldchain Management, Bonn, pp. 83–89 (2008),
  4. 4.
    Moureh, J., Flick, D.: Airflow pattern and temperature distribution in a typical refrigerated truck configuration loaded with pallets. International Journal of Refrigeration 27(5), 464–474 (2004)CrossRefGoogle Scholar
  5. 5.
    Tanner, D.J., Amos, N.D.: Heat and Mass Transfer - Temperature Variability during Shipment of Fresh Produce. Acta Horticulturae 599, 193–204 (2003)CrossRefGoogle Scholar
  6. 6.
    Jedermann, R., Schouten, R., Sklorz, A., Lang, W., van Kooten, O.: Linking keeping quality models and sensor systems to an autonomous transport supervision system. In: Kreyenschmidt, J., Petersen, B. (eds.) Proceedings of the 2nd international Workshop on Cold Chain-Management, pp. 3–18. University Bonn, Bonn (2006)Google Scholar
  7. 7.
    Jedermann, R., Lang, W.: Semi-passive RFID and beyond: steps towards automated quality tracing in the food chain. International Journal of Radio Frequency Identification Technology and Applications (IJRFITA) 1(3), 247–259 (2007)CrossRefGoogle Scholar
  8. 8.
    Krige, D.G.: A statistical approach to some mine valuations and allied problems at the Witwatersrand, Master’s thesis of the University of Witwatersrand (1951)Google Scholar
  9. 9.
    Camilli, A., Cugnasca, C.E., Saraiva, A.M., Hirakawa, A.R., Corrêa, P.L.P.: From wireless sensors to field mapping: Anatomy of an application for precision agriculture. Computers and Electronics in Agriculture 58(1), 25–36 (2007)CrossRefGoogle Scholar
  10. 10.
    Schafmeister, M.T.: Geostatistik für die hydrogeologische Praxis. Springer, Berlin (1999)CrossRefGoogle Scholar
  11. 11.
    Chilès, J.P., Delfiner, P.: Geostatistics - modeling spatial uncertainty. John Wiley & Sons, New York (1999)zbMATHGoogle Scholar
  12. 12.
    Ben-Israel, A., Greville, T.N.E.: Generalized Inverses. Springer, New York (2003)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Reiner Jedermann
    • 1
  • Walter Lang
    • 1
  1. 1.Microsystems Center Bremen (MCB)University of BremenBremenGermany

Personalised recommendations