Unimaximal Sequences of Pairs in Rectangle Visibility Drawing

  • Jan Štola
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)

Abstract

We study the existence of unimaximal subsequences in sequences of pairs of integers, e.g., the subsequences that have exactly one local maximum in each component of the subsequence. We show that every sequence of \(\frac{1}{12}n^2(n^2-1)+1\) pairs has a unimaximal subsequence of length n. We prove that this bound is tight. We apply this result to the problem of the largest complete graph with a 3D rectangle visibility representation and improve the upper bound from 55 to 50.

References

  1. 1.
    Fekete, S.P., Houle, M.E., Whitesides, S.: New results on a visibility representation of graphs in 3D. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 234–241. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  2. 2.
    Bose, P., Everett, H., Fekete, S.P., Lubiw, A., Meijer, H., Romanik, K., Shermer, T., Whitesides, S.: On a visibility representation for graphs in three dimensions. In: Di Battista, G., Eades, P., de Fraysseix, H., Rosenstiehl, P., Tamassia, R. (eds.) GD 1993, pp. 38–39 (1993)Google Scholar
  3. 3.
    Chung, F.R.K.: On unimodal subsequences. J. Combinatorial Theory 29(A), 267–279 (1980)CrossRefMATHGoogle Scholar
  4. 4.
    Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math. 2, 463–470 (1935)MathSciNetGoogle Scholar
  5. 5.
    Štola, J.: Colorability in orthogonal graph drawing. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 327–338. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Alt, H., Godau, M., Whitesides, S.: Universal 3-dimensional visibility representations for graphs. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 8–19. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  7. 7.
    Romanik, K.: Directed VR-Representable Graphs have Unbounded Dimension. In: Tamassia, R., Tollis, I(Y.) G. (eds.) GD 1994. LNCS, vol. 894, pp. 177–181. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Fekete, S.P., Meijer, H.: Rectangle and box visibility graphs in 3D. Int. J. Comput. Geom. Appl. 97, 1–28 (1997)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jan Štola
    • 1
  1. 1.Department of Applied MathematicsCharles UniversityPragueCzech Republic

Personalised recommendations