Cubic Graphs Have Bounded Slope Parameter

  • Balázs Keszegh
  • János Pach
  • Dömötör Pálvölgyi
  • Géza Tóth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)

Abstract

We show that every finite connected graph G with maximum degree three and with at least one vertex of degree smaller than three has a straight-line drawing in the plane satisfying the following conditions. No three vertices are collinear, and a pair of vertices form an edge in G if and only if the segment connecting them is parallel to one of the sides of a previously fixed regular pentagon. It is also proved that every finite graph with maximum degree three permits a straight-line drawing with the above properties using only at most seven different edge slopes.

References

  1. 1.
    Ambrus, G., Barát, J., Hajnal, P.: The slope parameter of graphs. Acta Sci. Math.(Szeged) 72(3–4), 875–889 (2006)MATHMathSciNetGoogle Scholar
  2. 2.
    Barát, J., Matoušek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily large geometric thickness. Electr. J. Combin. 13(1), R3, 14pp. (2006)Google Scholar
  3. 3.
    Dillencourt, M.B., Eppstein, D., Hirschberg, D.S.: Geometric thickness of complete graphs. J. Graph Algorithms Appl. 4(3), 5–17 (2000)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Dujmović, V., Suderman, M., Wood, D.R.: Graph drawings with few slopes. Comput. Geom. 38, 181–193 (2007)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Dujmović, V., Wood, D.R.: Graph treewidth and geometric thickness parameters. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 129–140. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Duncan, C.A., Eppstein, D., Kobourov, S.G.: The geometric thickness of low degree graphs. In: SoCG 2004, pp. 340–346. ACM Press, New York (2004)Google Scholar
  7. 7.
    Eppstein, D.: Separating thickness from geometric thickness. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs. Contemporary Math, vol. 342, pp. 75–86. AMS, Providence (2004)CrossRefGoogle Scholar
  8. 8.
    Fáry, I.: On straight line representation of planar graphs. Acta Univ. Szeged. Sect. Sci. Math. 11, 229–233 (1948)MATHMathSciNetGoogle Scholar
  9. 9.
    Hutchinson, J.P., Shermer, T.C., Vince, A.: On representations of some thickness-two graphs. Comput. Geom. 13, 161–171 (1999)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Jamison, R.E.: Few slopes without collinearity. Discrete Math. 60, 199–206 (1986)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Kainen, P.C.: Thickness and coarseness of graphs. Abh. Math. Sem. Univ. Hamburg 39, 88–95 (1973)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Keszegh, B., Pach, J., Pálvölgyi, D., Tóth, G.: Drawing cubic graphs with at most five slopes. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 114–125. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Mukkamala, P., Szegedy, M.: Geometric representation of cubic graphs with four directions (manuscript, 2007)Google Scholar
  14. 14.
    Mutzel, P., Odenthal, T., Scharbrodt, M.: The thickness of graphs: a survey. Graphs Combin. 14, 59–73 (1998)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope numbers. Electr. J. Combin. 13(1), Note 1, 4pp. (2006)Google Scholar
  16. 16.
    Wade, G.A., Chu, J.-H.: Drawability of complete graphs using a minimal slope set. The Computer J. 37, 139–142 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Balázs Keszegh
    • 1
    • 5
  • János Pach
    • 2
    • 4
    • 5
  • Dömötör Pálvölgyi
    • 3
    • 4
  • Géza Tóth
    • 5
  1. 1.Central European UniversityBudapestHungary
  2. 2.City College, CUNYNew YorkUSA
  3. 3.Eötvös UniversityBudapestHungary
  4. 4.Ecole Polytechnique Fédérale de LausanneSwitzerland
  5. 5.A. Rényi Institute of MathematicsBudapestHungary

Personalised recommendations