Subdivision Drawings of Hypergraphs

  • Michael Kaufmann
  • Marc van Kreveld
  • Bettina Speckmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)

Abstract

We introduce the concept of subdivision drawings of hypergraphs. In a subdivision drawing each vertex corresponds uniquely to a face of a planar subdivision and, for each hyperedge, the union of the faces corresponding to the vertices incident to that hyperedge is connected. Vertex-based Venn diagrams and concrete Euler diagrams are both subdivision drawings. In this paper we study two new types of subdivision drawings which are more general than concrete Euler diagrams and more restricted than vertex-based Venn diagrams. They allow us to draw more hypergraphs than the former while having better aesthetic properties than the latter.

References

  1. 1.
    Berge, C.: Graphs and Hypergraphs. North-Holland, Amsterdam (1973)MATHGoogle Scholar
  2. 2.
    Bertault, F., Eades, P.: Drawing hypergraphs in the subset standard. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 164–169. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Brinkmeier, M., Werner, J., Recknagel, S.: Communities in graphs and hypergraphs. In: ACM CIKM 2007, pp. 869–872 (2007)Google Scholar
  4. 4.
    Didimo, W., Giordano, F., Liotta, G.: Overlapping cluster planarity. In: Asia-Pacific Symposium on Visualisation, pp. 73–80 (2007)Google Scholar
  5. 5.
    Dillencourt, M.B.: Realizability of Delaunay triangulations. Information Processing Letters 33(6), 283–287 (1990)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Eschbach, T., Günther, W., Becker, B.: Orthogonal hypergraph drawing for improved visibility. J. of Graph Algorithms and Applications 10(2), 141–157 (2006)CrossRefMATHGoogle Scholar
  7. 7.
    Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes. J. of the ACM 30(3), 514–550 (1983)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Flower, J., Howse, J.: Generating Euler diagrams. In: Hegarty, M., Meyer, B., Narayanan, N.H. (eds.) Diagrams 2002. LNCS, vol. 2317, pp. 61–75. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Johnson, D., Pollak, H.: Hypergraph planarity and the complexity of drawing Venn diagrams. J. of Graph Theory 11(3), 309–325 (1987)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Lundgren, J.R.: Food webs, competition graphs, competition-common enemy graphs and niche graphs. Applications of Combinatorics and Graph Theory to the Biological and Social Sciences 17, 221–243 (1989)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Mäkinen, E.: How to draw a hypergraph. International J. of Computer Mathematics 34, 177–185 (1990)CrossRefMATHGoogle Scholar
  12. 12.
    Ramadan, E., Tarafdar, A., Pothen, A.: A hypergraph model for the yeast protein complex network. In: 18th Parallel and Distributed Processing Symposium, pp. 189–190 (2004)Google Scholar
  13. 13.
    Ruskey, F., Weston, M.: A survey of Venn diagrams. The Electronic J. of Combinatorics (2005), http://www.combinatorics.org/Surveys/ds5/VennEJC.html
  14. 14.
    Sander, G.: Layout of directed hypergraphs with orthogonal hyperedges. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol. 3393, pp. 381–386. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, Cambridge (1995)MATHGoogle Scholar
  16. 16.
    Verroust, A., Viaud, M.L.: Ensuring the drawability of extended Euler diagrams for up to 8 sets. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) Diagrams 2004. LNCS, vol. 2980, pp. 128–141. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Walsh, T.: Hypermaps versus bipartite maps. J. of Combinatorial Theory 18, 155–163 (1975)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael Kaufmann
    • 1
  • Marc van Kreveld
    • 2
  • Bettina Speckmann
    • 3
  1. 1.Institut für InformatikUniversität TübingenGermany
  2. 2.Department of Computer ScienceUtrecht UniversityThe Netherlands
  3. 3.Department of Mathematics and Computer ScienceTU EindhovenThe Netherlands

Personalised recommendations