Advertisement

Isometric Diamond Subgraphs

  • David Eppstein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)

Abstract

We test in polynomial time whether a graph embeds in a distance-preserving way into the hexagonal tiling, the three-dimensional diamond structure, or analogous higher-dimensional structures.

Keywords

Partial Order Isometric Embedding Graph Drawing Periodic Tiling White Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Balaban, A.T.: Graphs of multiple 1, 2-shifts in carbonium ions and related systems. Rev. Roum. Chim. 11, 1205 (1966)Google Scholar
  2. 2.
    Bhatt, S., Cosmodakis, S.: The complexity of minimizing wire lengths in VLSI layouts. Inform. Proc. Lett. 25, 263–267 (1987)CrossRefMATHGoogle Scholar
  3. 3.
    Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of Mathematics 51, 161–166 (1950)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Djokovic, D.Z.: Distance preserving subgraphs of hypercubes. J. Combinatorial Theory, Ser. B 14, 263–267 (1973)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Eades, P., Whitesides, S.: The logic engine and the realization problem for nearest neighbor graphs. Theoretical Computer Science 169(1), 23–37 (1996)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Eppstein, D.: Algorithms for drawing media. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 173–183. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Eppstein, D.: The lattice dimension of a graph. Eur. J. Combinatorics 26(5), 585–592 (July 2005), http://dx.doi.org/10.1016/j.ejc.2004.05.001 Google Scholar
  8. 8.
    Eppstein, D.: Cubic partial cubes from simplicial arrangements. Electronic J. Combinatorics 13(1), R79 (2006)MathSciNetGoogle Scholar
  9. 9.
    Eppstein, D.: Recognizing partial cubes in quadratic time. In: Proc. 19th Symp. Discrete Algorithms, pp. 1258–1266. ACM and SIAM (2008)Google Scholar
  10. 10.
    Eppstein, D.: The topology of bendless three-dimensional orthogonal graph drawing. In: Proc. 16th Int. Symp. Graph Drawing (2008)Google Scholar
  11. 11.
    Eppstein, D., Falmagne, J.C., Ovchinnikov, S.: Media Theory: Applied Interdisciplinary Mathematics. Springer, Heidelberg (2008)Google Scholar
  12. 12.
    Felsner, S., Raghavan, V., Spinrad, J.: Recognition algorithms for orders of small width and graphs of small Dilworth number. Order 20(4), 351–364 (2003)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Mislow, K.: Role of pseudorotation in the stereochemistry of nucleophilic displacement reactions. Acc. Chem. Res. 3(10), 321–331 (1970)CrossRefGoogle Scholar
  14. 14.
    Winkler, P.: Isometric embeddings in products of complete graphs. Discrete Applied Mathematics 7, 221–225 (1984)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • David Eppstein
    • 1
  1. 1.Computer Science DepartmentUniversity of CaliforniaIrvineUSA

Personalised recommendations