A Fully Dynamic Algorithm to Test the Upward Planarity of Single-Source Embedded Digraphs

  • Aimal Rextin
  • Patrick Healy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)


In this paper, we present a dynamic algorithm that checks if a single-source embedded digraph is upward planar in the presence of edge insertions and edge deletions. Let Gφ be an upward planar single-source embedded digraph and let Gφ be a single-source embedded digraph obtained by updating Gφ. We show that the upward planarity of Gφ can be checked in O(logn) amortized time when the external face is fixed.


  1. 1.
    Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simplified algorithms for maintaining order in a list. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 152–164. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bertolazzi, P., Battista, G.D., Didimo, W.: Quasi-upward planarity. Algorithmica 32(3), 474–506 (2002)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bertolazzi, P., Battista, G.D., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 12(6), 476–497 (1994)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bertolazzi, P., Battista, G.D., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Demetrescu, C., Finocchi, I., Italiano, G.: Handbook of Graph Theory. In: Yellen, J., Gross, J.L. (eds.) Dynamic Graph Algorithms. CRC Press Series, in Discrete Mathematics and Its Applications, vol. 10.2 (2003) ISBN 1-58488-090-2Google Scholar
  6. 6.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  7. 7.
    Didimo, W.: Computing upward planar drawings using switch-regularity heuristics. In: SOFSEM, pp. 117–126 (2005)Google Scholar
  8. 8.
    Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity testing. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 117–128. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Hutton, M.D., Lubiw, A.: Upward planar drawing of single-source acyclic digraphs. SIAM J. Comput. 25(2), 291–311 (1996)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Papakostas, A.: Upward planarity testing of outerplanar DAGs. In: Proceedings Graph Drawing. pp. 298–306 (1994)Google Scholar
  12. 12.
    Tamassia, R.: On-line planar graph embedding. J. Algorithms 21(2), 201–239 (1996)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Aimal Rextin
    • 1
  • Patrick Healy
    • 1
  1. 1.Computer Science DepartmentUniversity of LimerickIreland

Personalised recommendations