Embeddability Problems for Upward Planar Digraphs

  • Francesco Giordano
  • Giuseppe Liotta
  • Sue H. Whitesides
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)

Abstract

We study two embedding problems for upward planar digraphs. Both problems arise in the context of drawing sequences of upward planar digraphs having the same set of vertices, where the location of each vertex is to remain the same for all the drawings of the graphs. We develop a method, based on the notion of book embedding, that gives characterization results for embeddability as well as testing and drawing algorithms.

References

  1. 1.
    Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 102–113. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.: Graph Drawing. Prentice-Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  3. 3.
    Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theoretical Computer Science 61(2-3), 175–198 (1988)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Enomoto, H., Miyauchi, M.: Embedding graphs into a three page book with O(M logN) crossings of edges over the spine. SIAM J. of Discrete Math. 12(3), 337–341 (1999)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Frati, F., Kaufmann, M., Kobourov, S.: Constrained simultaneous and near-simultaneous embeddings. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 268–279. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Giordano, F., Liotta, G., Mchedlidze, T., Symvonis, A.: Computing upward topological book embeddings of upward planar digraphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 172–183. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Giordano, F., Liotta, G., Whitesides, S.: Drawing a sequence of upward planar digraphs: Characterization results and testing algorithms. Tech. rep., Università degli Studi di Perugia, RT-008-01 (2008)Google Scholar
  8. 8.
    Goodman, J.E., Pollack, R.: On the combinatorial classification of nondegenerate configurations in the plane. J. of Combinatorial Theory, Ser. A 29(2), 220–235 (1980)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Halton, J.H.: On the thickness of graphs of given degree. Inform. Sciences 54, 219–238 (1991)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Jünger, M., Leipert, S.: Level planar embedding in linear time. J. of Graph Algorithms and Applications 6(1), 67–113 (2002)CrossRefMATHGoogle Scholar
  11. 11.
    Jünger, M., Leipert, S., Mutzel, P.: Level planarity testing in linear time. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 224–237. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg (2001)MATHGoogle Scholar
  13. 13.
    Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs and Combin. 17(4), 717–728 (2001)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Francesco Giordano
    • 1
  • Giuseppe Liotta
    • 1
  • Sue H. Whitesides
    • 2
  1. 1.Università degli Studi di PerugiaItaly
  2. 2.McGill UniversityCanada

Personalised recommendations