Efficient Node Overlap Removal Using a Proximity Stress Model
Conference paper
Abstract
When drawing graphs whose nodes contain text or graphics, the nontrivial node sizes must be taken into account, either as part of the initial layout or as a post-processing step. The core problem is to avoid overlaps while retaining the structural information inherent in a layout using little additional area. This paper presents a new node overlap removal algorithm that does well by these measures.
Keywords
Edge Length Voronoi Diagram Delaunay Triangulation Node Size Conjugate Gradient Algorithm
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Download
to read the full conference paper text
References
- 1.Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, Heidelberg (1997)CrossRefzbMATHGoogle Scholar
- 2.Chuang, J.H., Lin, C.C., Yen, H.C.: Drawing graphs with nonuniform nodes using potential fields. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 460–465. Springer, Heidelberg (2001)Google Scholar
- 3.Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 153–164. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 4.Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)MathSciNetGoogle Scholar
- 5.Erten, C., Efrat, A., Forrester, D., Iyer, A., Kobourov, S.G.: Force-directed approaches to sensor network localization. In: Raman, R., Sedgewick, R., Stallmann, M.F. (eds.) Proc. 8th Workshop Algorithm Engineering and Experiments (ALENEX), pp. 108–118. SIAM, Philadelphia (2006)Google Scholar
- 6.Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
- 7.Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force directed placement. Software - Practice and Experience 21, 1129–1164 (1991)CrossRefGoogle Scholar
- 8.Gansner, E.R., Koren, Y., North, S.C.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 9.Gansner, E.R., North, S.: An open graph visualization system and its applications to software engineering. Software - Practice & Experience 30, 1203–1233 (2000)CrossRefzbMATHGoogle Scholar
- 10.Gansner, E.R., North, S.C.: Improved force-directed layouts. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 364–373. Springer, Heidelberg (1999)CrossRefGoogle Scholar
- 11.Gower, J.C., Dijksterhuis, G.B.: Procrustes Problems. Oxford University Press, Oxford (2004)CrossRefzbMATHGoogle Scholar
- 12.Guibas, L., Stolfi, J.: Primitives for the manipulation of general subdivisions and the computation of voronoi. ACM Trans. Graph. 4(2), 74–123 (1985)CrossRefzbMATHGoogle Scholar
- 13.Harel, D., Koren, Y.: A fast multi-scale method for drawing large graphs. J. Graph Algorithms and Applications 6, 179–202 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
- 14.Hayashi, K., Inoue, M., Masuzawa, T., Fujiwara, H.: A layout adjustment problem for disjoint rectangles preserving orthogonal order. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 183–197. Springer, Heidelberg (1999)CrossRefGoogle Scholar
- 15.Hu, Y.F.: Drawings of the mathematics genealogy project graphs, http://www.research.att.com/~yifanhu/GALLERY/MATH_GENEALOGY
- 16.Hu, Y.F.: Efficient and high quality force-directed graph drawing. Mathematica Journal 10, 37–71 (2005)Google Scholar
- 17.Huang, X., Lai, W.: Force-transfer: A new approach to removing overlapping nodes in graph layout. In: Proc. 25th Australian Computer Science Conference, pp. 349–358 (2003), citeseer.ist.psu.edu/564050.html
- 18.Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their relatives. Proc. IEEE 80, 1502–1517 (1992)CrossRefGoogle Scholar
- 19.Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Information Processing Letters 31, 7–15 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
- 20.Leach, G.: Improving worst-case optimal Delaunay triangulation algorithms. In: 4th Canadian Conference on Computational Geometry. pp. 340–346 (1992), citeseer.ist.psu.edu/leach92improving.html
- 21.Li, W., Eades, P., Nikolov, N.: Using spring algorithms to remove node overlapping. In: Proc. Asia-Pacific Symp. on Information Visualisation, pp. 131–140 (2005)Google Scholar
- 22.Lyons, K.A., Meijer, H., Rappaport, D.: Algorithms for cluster busting in anchored graph drawing. J. Graph Algorithms and Applications 2(1) (1998)Google Scholar
- 23.Marriott, K., Stuckey, P.J., Tam, V., He, W.: Removing node overlapping in graph layout using constrained optimization. Constraints 8(2), 143–171 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
- 24.Department of mathematics at North Dekota State University: The mathematics genealogy project, http://genealogy.math.ndsu.nodak.edu/
- 25.Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. J. Vis. Lang. Comput. 6(2), 183–210 (1995)CrossRefGoogle Scholar
- 26.Wang, X., Miyamoto, I.: Generating customized layouts. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 504–515. Springer, Heidelberg (1996)CrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2009