Efficient Node Overlap Removal Using a Proximity Stress Model

  • Emden R. Gansner
  • Yifan Hu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)


When drawing graphs whose nodes contain text or graphics, the nontrivial node sizes must be taken into account, either as part of the initial layout or as a post-processing step. The core problem is to avoid overlaps while retaining the structural information inherent in a layout using little additional area. This paper presents a new node overlap removal algorithm that does well by these measures.


  1. 1.
    Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, Heidelberg (1997)CrossRefMATHGoogle Scholar
  2. 2.
    Chuang, J.H., Lin, C.C., Yen, H.C.: Drawing graphs with nonuniform nodes using potential fields. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 460–465. Springer, Heidelberg (2001)Google Scholar
  3. 3.
    Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 153–164. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)MathSciNetGoogle Scholar
  5. 5.
    Erten, C., Efrat, A., Forrester, D., Iyer, A., Kobourov, S.G.: Force-directed approaches to sensor network localization. In: Raman, R., Sedgewick, R., Stallmann, M.F. (eds.) Proc. 8th Workshop Algorithm Engineering and Experiments (ALENEX), pp. 108–118. SIAM, Philadelphia (2006)Google Scholar
  6. 6.
    Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force directed placement. Software - Practice and Experience 21, 1129–1164 (1991)CrossRefGoogle Scholar
  8. 8.
    Gansner, E.R., Koren, Y., North, S.C.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Gansner, E.R., North, S.: An open graph visualization system and its applications to software engineering. Software - Practice & Experience 30, 1203–1233 (2000)CrossRefMATHGoogle Scholar
  10. 10.
    Gansner, E.R., North, S.C.: Improved force-directed layouts. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 364–373. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Gower, J.C., Dijksterhuis, G.B.: Procrustes Problems. Oxford University Press, Oxford (2004)CrossRefMATHGoogle Scholar
  12. 12.
    Guibas, L., Stolfi, J.: Primitives for the manipulation of general subdivisions and the computation of voronoi. ACM Trans. Graph. 4(2), 74–123 (1985)CrossRefMATHGoogle Scholar
  13. 13.
    Harel, D., Koren, Y.: A fast multi-scale method for drawing large graphs. J. Graph Algorithms and Applications 6, 179–202 (2002)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Hayashi, K., Inoue, M., Masuzawa, T., Fujiwara, H.: A layout adjustment problem for disjoint rectangles preserving orthogonal order. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 183–197. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Hu, Y.F.: Drawings of the mathematics genealogy project graphs, http://www.research.att.com/~yifanhu/GALLERY/MATH_GENEALOGY
  16. 16.
    Hu, Y.F.: Efficient and high quality force-directed graph drawing. Mathematica Journal 10, 37–71 (2005)Google Scholar
  17. 17.
    Huang, X., Lai, W.: Force-transfer: A new approach to removing overlapping nodes in graph layout. In: Proc. 25th Australian Computer Science Conference, pp. 349–358 (2003), citeseer.ist.psu.edu/564050.html
  18. 18.
    Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their relatives. Proc. IEEE 80, 1502–1517 (1992)CrossRefGoogle Scholar
  19. 19.
    Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Information Processing Letters 31, 7–15 (1989)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Leach, G.: Improving worst-case optimal Delaunay triangulation algorithms. In: 4th Canadian Conference on Computational Geometry. pp. 340–346 (1992), citeseer.ist.psu.edu/leach92improving.html
  21. 21.
    Li, W., Eades, P., Nikolov, N.: Using spring algorithms to remove node overlapping. In: Proc. Asia-Pacific Symp. on Information Visualisation, pp. 131–140 (2005)Google Scholar
  22. 22.
    Lyons, K.A., Meijer, H., Rappaport, D.: Algorithms for cluster busting in anchored graph drawing. J. Graph Algorithms and Applications 2(1) (1998)Google Scholar
  23. 23.
    Marriott, K., Stuckey, P.J., Tam, V., He, W.: Removing node overlapping in graph layout using constrained optimization. Constraints 8(2), 143–171 (2003)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Department of mathematics at North Dekota State University: The mathematics genealogy project, http://genealogy.math.ndsu.nodak.edu/
  25. 25.
    Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. J. Vis. Lang. Comput. 6(2), 183–210 (1995)CrossRefGoogle Scholar
  26. 26.
    Wang, X., Miyamoto, I.: Generating customized layouts. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 504–515. Springer, Heidelberg (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Emden R. Gansner
    • 1
  • Yifan Hu
    • 1
  1. 1.AT&T LabsShannon LaboratoryFlorham ParkUSA

Personalised recommendations