Graph Simultaneous Embedding Tool, GraphSET

  • Alejandro Estrella-Balderrama
  • J. Joseph Fowler
  • Stephen G. Kobourov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)

Abstract

Problems in simultaneous graph drawing involve the layout of several graphs on a shared vertex set. This paper describes a Graph Simultaneous Embedding Tool, GraphSET, designed to allow the investigation of a wide range of embedding problems. GraphSET can be used in the study of several variants of simultaneous embedding including simultaneous geometric embedding, simultaneous embedding with fixed edges and colored simultaneous embedding with the vertex set partitioned into color classes. The tool has two primary uses: (i) studying theoretical problems in simultaneous graph drawing through the production of examples and counterexamples and (ii) producing layouts of given classes of graphs using built-in implementations of known algorithms. GraphSET along with movies illustrating its utility are available at http://graphset.cs.arizona.edu.

References

  1. 1.
    Booth, K., Lueker, G.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Brandes, U., Erten, C., Fowler, J.J., Frati, F., Geyer, M., Gutwenger, C., Hong, S., Kaufmann, M., Kobourov, S.G., Liotta, G., Mutzel, P., Symvonis, A.: Colored simultaneous geometric embeddings. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 254–263. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Dietz, P., Leigh, D.: Diamondtouch: a multi-user touch technology. In: 14th ACM Symposium on User interface software and technology, pp. 219–226 (2001)Google Scholar
  4. 4.
    Eades, P., Feng, Q.-W., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for hierarchical graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Erten, C., Kobourov, S.G., Navabia, A., Le, V.: Simultaneous graph drawing: Layout algorithms and visualization schemes. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 437–449. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Characterization of unlabeled level planar trees. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 367–369. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Estrella-Balderrama, A., Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous geometric graph embeddings. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 280–290. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Fowler, J.J., Kobourov, S.G.: Minimum level nonplanar patterns for trees. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 69–75. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous graph embeddings with fixed edges. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 325–335. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Geyer, M., Kaufmann, M., Vrtǒ, I.: Two trees which are self-intersecting when drawn simultaneously. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 201–210. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Healy, P., Harrigan, M.: Practical level planarity testing and layout with embedding constraints. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 62–68. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Healy, P., Kuusik, A.: The vertex-exchange graph: A new concept for multi-level crossing minimisation. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 205–216. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Jünger, M., Leipert, S.: Level planar embedding in linear time. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 72–81. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Jünger, M., Leipert, S., Mutzel, P.: Level planarity testing in linear time. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 224–237. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Kobourov, S.G., Pitta, C.: An interactive multi-user system for simultaneous graph drawing. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 492–501. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Mehlhorn, K., Näher, S.: The LEDA Platform of Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alejandro Estrella-Balderrama
    • 1
  • J. Joseph Fowler
    • 1
  • Stephen G. Kobourov
    • 1
  1. 1.Department of Computer ScienceUniversity of ArizonaUSA

Personalised recommendations