Clustered Planarity: Embedded Clustered Graphs with Two-Component Clusters

(Extended Abstract)
  • Vít Jelínek
  • Eva Jelínková
  • Jan Kratochvíl
  • Bernard Lidický
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)

Abstract

We present a polynomial-time algorithm for c-planarity testing of clustered graphs with fixed plane embedding and such that every cluster induces a subgraph with at most two connected components.

Keywords

Connected Subgraph Outer Face Root Cluster Underlying Graph Pruning Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: On embedding a cycle in a plane graph. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 49–60. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: Clustering cycles into cycles of clusters. Journal of Graph Algorithms and Applications 9(3), 391–413 (2005); special issue In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 100–110. Springer, Heidelberg (2005)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Dahlhaus, E.: A linear time algorithm to recognize clustered planar graphs and its parallelization. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 239–248. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Di Battista, G., Frati, F.: Efficient C-planarity testing for embedded flat clustered graphs with small faces. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 291–302. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Feng, Q.W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Goodrich, M.T., Lueker, G.S., Sun, J.Z.: C-planarity of extrovert clustered graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 211–222. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Advances in c-planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 220–235. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Subgraph induced planar connectivity augmentation. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 261–272. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Jelínková, E., Kára, J., Kratochvíl, J., Pergel, M., Suchý, O., Vyskočil, T.: Clustered planarity: Small clusters in eulerian graphs. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 303–314. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Vít Jelínek
    • 1
  • Eva Jelínková
    • 1
  • Jan Kratochvíl
    • 1
    • 2
  • Bernard Lidický
    • 1
  1. 1.Department of Applied MathematicsUSA
  2. 2.Institute for Theoretical Computer ScienceCharles UniversityPrahaCzech Republic

Personalised recommendations