Clustered Planarity: Clusters with Few Outgoing Edges

  • Vít Jelínek
  • Ondřej Suchý
  • Marek Tesař
  • Tomáš Vyskočil
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)

Abstract

We present a linear algorithm for c-planarity testing of clustered graphs, in which every cluster has at most four outgoing edges.

References

  1. 1.
    Cornelsen, S., Wagner, D.: Completely connected clustered graphs. Journal of Discrete Algorithms 4(2), 313–323 (2006)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Cortese, P.F., Di Battista, G.: Clustered planarity. In: ACM SoCG 2005, pp. 32–34 (2005)Google Scholar
  3. 3.
    Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: Clustering cycles into cycles of clusters. Journal of Graph Algorithms and Applications 9(3), 391–413 (2005); In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 391–413. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Dahlhaus, E.: A linear time algorithm to recognize clustered planar graphs and its parallelization. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 239–248. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Di Battista, G., Frati, F.: Efficient C-planarity testing for embedded flat clustered graphs with small faces. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 291–302. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Eades, P., Feng, Q.W., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for hierarchical graphs and clustered Graphs. Algorithmica 44, 1–32 (2006)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Feng, Q.W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Goodrich, M.T., Lueker, G.S., Sun, J.Z.: C-planarity of extrovert clustered graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 211–222. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Advances in c-planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 220–235. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Subgraph induced planar connectivity augmentation. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 261–272. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Hopcroft, J., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Jelínková, E., Kára, J., Kratochvíl, J., Pergel, M., Suchý, O., Vyskočil, T.: Clustered planarity: Small clusters in eulerian graphs. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 303–314. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Vít Jelínek
    • 1
  • Ondřej Suchý
    • 1
  • Marek Tesař
    • 1
  • Tomáš Vyskočil
    • 1
  1. 1.Department of Applied MathematicsCharles UniversityPrahaCzech Republic

Personalised recommendations