Advertisement

Clustered Planarity: Clusters with Few Outgoing Edges

  • Vít Jelínek
  • Ondřej Suchý
  • Marek Tesař
  • Tomáš Vyskočil
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5417)

Abstract

We present a linear algorithm for c-planarity testing of clustered graphs, in which every cluster has at most four outgoing edges.

Keywords

Connected Graph Outgoing Edge Planarity Testing Linear Time Algorithm Outer Face 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cornelsen, S., Wagner, D.: Completely connected clustered graphs. Journal of Discrete Algorithms 4(2), 313–323 (2006)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Cortese, P.F., Di Battista, G.: Clustered planarity. In: ACM SoCG 2005, pp. 32–34 (2005)Google Scholar
  3. 3.
    Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: Clustering cycles into cycles of clusters. Journal of Graph Algorithms and Applications 9(3), 391–413 (2005); In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 391–413. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Dahlhaus, E.: A linear time algorithm to recognize clustered planar graphs and its parallelization. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 239–248. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Di Battista, G., Frati, F.: Efficient C-planarity testing for embedded flat clustered graphs with small faces. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 291–302. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Eades, P., Feng, Q.W., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for hierarchical graphs and clustered Graphs. Algorithmica 44, 1–32 (2006)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Feng, Q.W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Goodrich, M.T., Lueker, G.S., Sun, J.Z.: C-planarity of extrovert clustered graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 211–222. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Advances in c-planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 220–235. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Subgraph induced planar connectivity augmentation. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 261–272. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Hopcroft, J., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Jelínková, E., Kára, J., Kratochvíl, J., Pergel, M., Suchý, O., Vyskočil, T.: Clustered planarity: Small clusters in eulerian graphs. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 303–314. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Vít Jelínek
    • 1
  • Ondřej Suchý
    • 1
  • Marek Tesař
    • 1
  • Tomáš Vyskočil
    • 1
  1. 1.Department of Applied MathematicsCharles UniversityPrahaCzech Republic

Personalised recommendations