All Farthest Neighbors in the Presence of Highways and Obstacles

  • Sang Won Bae
  • Matias Korman
  • Takeshi Tokuyama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5431)

Abstract

We consider the problem of computing all farthest neighbors (and the diameter) of a given set of n points in the presence of highways and obstacles in the plane. When traveling on the plane, travelers may use highways for faster movement and must avoid all obstacles. We present an efficient solution to this problem based on knowledge from earlier research on shortest path computation. Our algorithms run in \(\ensuremath{O(nm(\log m + \log^2n))}\) time using O(m + n) space, where the m is the combinatorial complexity of the environment consisting of highways and obstacles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., Matoušek, J.: On range searching with semialgebraic sets. Discrete Comput. Geom. 11(1), 393–418 (1994)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ahn, H.-K., Alt, H., Asano, T., Bae, S.W., Brass, P., Cheong, O., Knauer, C., Na, H.-S., Shin, C.-S., Wolff, A.: Constructing optimal highways. In: Proc. 13th Comput., Australasian Theory Sympos. (CATS), Ballarat, Australia. CRPIT, vol. 65, pp. 7–14. ACS (2007)Google Scholar
  3. 3.
    Aichholzer, O., Aurenhammer, F., Palop, B.: Quickest paths, straight skeletons, and the city Voronoi diagram. In: Proc. 18th Annu. ACM Sympos. Comput. Geom., pp. 151–159 (2002)Google Scholar
  4. 4.
    Bae, S.W., Chwa, K.-Y.: The farthest city Voronoi diagram. In: Proc. of the First Meeting of AAAC (2008)Google Scholar
  5. 5.
    Bae, S.W., Kim, J.-H., Chwa, K.-Y.: Optimal construction of the city Voronoi diagram. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 183–192. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Ben-Moshe, B., Katz, M.J., Mitchell, J.S.B.: Farthest neighbors and center points in the presence of rectangular obstacles. In: Proc. 17th Annu. ACM Sympos. Comput. Geom., pp. 164–171 (2001)Google Scholar
  7. 7.
    Cardinal, J., Collette, S., Hurtado, F., Langerman, S., Palop, B.: Moving walkways, escalators, and elevators. CoRR, abs/0705.0635 (2007)Google Scholar
  8. 8.
    Chazelle, B.: An algorithm for segment dragging and its implementation. Algorithmica 3, 205–221 (1988)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry. Discrete Comput. Geom. 4, 387–421 (1989)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Mitchell, J.S.B.: L 1 shortest paths among polygonal obstacles in the plane. Algorithmica 8, 55–88 (1992)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Mitchell, J.S.B.: Shortest paths among obstacles in the plane. Internat. J. Comput. Geom. Appl. 6(3), 309–331 (1996)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ostrovsky-Berman, Y.: The transportation metric and related problems. Inform. Process. Lett. 95, 461–465 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sang Won Bae
    • 1
  • Matias Korman
    • 2
  • Takeshi Tokuyama
    • 2
  1. 1.Division of Computer ScienceKAISTKorea
  2. 2.Graduate School of Information SciencesTohoku UniversitySendaiJapan

Personalised recommendations