Spherical-Rectangular Drawings

  • Mahdieh Hasheminezhad
  • S. Mehdi Hashemi
  • Brendan D. McKay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5431)

Abstract

We extend the concept of rectangular drawing to drawings on a sphere using meridians and circles of latitude such that each face is bounded by at most two circles and at most two meridians. This is called spherical-rectangular drawing. Special cases include drawing on a cylinder, a cone, or a lattice of concentric circles on the plane. In this paper, we prove necessary and sufficient conditions for cubic planar graphs to have spherical-rectangular drawings, and show that one can find in linear time a spherical-rectangular drawing of a subcubic planar graph if it has one.

Keywords

Plane Graph Linear Time Concentric Circle Parallel Edge External Face 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Di Battista, G., Tammasia, R.: On-line planarity testing. SIAM Journal on Computing 5, 956–997 (1996)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Hasheminezhad, M., Hashemi, M.S., Tahmasbi, M.: Ortho-radial drawings of graphs. Australasian Journal Combinatorics (to appear)Google Scholar
  3. 3.
    Kowalik, L.: Short cycles in planar graphs. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 284–296. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Miura, K., Haga, H., Nishizeki, T.: Inner rectangular drawings of plane graphs. International Journal of Computational Geometry and Applications 16, 249–270 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Rahman, M.S., Nakano, S., Nishizeki, T.: Rectangular grid drawing of plane graphs. Computational Geometry 10, 203–220 (1998)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Rahman, M.S., Nakano, S., Nishizeki, T.: Rectangular drawings of plane graphs without designated corners. Computational Geometry 21, 121–138 (2002)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Rahman, M.S., Nishizeki, T., Ghosh, S.: Rectangular drawings of planar graphs. Journal of Algorithms 50, 62–78 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Thomassen, C.: Plane representations of graphs. Progress in Graph Theory, 43–69 (1984)Google Scholar
  9. 9.
    Zhang, H., He, X.: Compact visibility representation and straight-line grid embedding of plane graphs. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 493–504. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mahdieh Hasheminezhad
    • 1
  • S. Mehdi Hashemi
    • 1
  • Brendan D. McKay
    • 2
  1. 1.Department of Computer Science, Faculty of Mathematics and Computer ScienceAmirkabir University of TechnologyTehranIran
  2. 2.Department of Computer ScienceAustralian National UniversityCanberraAustralia

Personalised recommendations