Advertisement

Approximating Shortest Paths in Graphs

  • Sandeep Sen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5431)

Abstract

Computing all-pairs distances in a graph is a fundamental problem of computer science but there has been a status quo with respect to the general problem of weighted directed graphs. In contrast, there has been a growing interest in the area of algorithms for approximate shortest paths leading to many interesting variations of the original problem.

In this article, we trace some of the fundamental developments like spanners and distance oracles, their underlying constructions, as well as their applications to the approximate all-pairs shortest paths.

Keywords

Short Path Weighted Graph Approximate Distance Short Path Tree Unweighted Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Awerbuch, B., Baratz, A., Peleg, D.: Efficient broadcast and light weight spanners. Tech. Report CS92-22, Weizmann Institute of Science (1992)Google Scholar
  2. 2.
    Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths(without matrix multiplication). SIAM Journal on Computing 28, 1167–1181 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete and Computational Geometry 9, 81–100 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Awerbuch, B.: Complexity of network synchronization. Journal of Association of Computing Machinery 32(4), 804–823 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bollobás, B., Coppersmith, D., Elkin, M.: Sparse distance preserves and additive spanners. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 414–423 (2003)Google Scholar
  6. 6.
    Baswana, S., Goyal, V., Sen, S.: All-pairs nearly 2-approximate shortest paths in O(n 2polylog n) time. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 666–679. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Baswana, S., Gaur, A., Sen, S., Upadhyaya, J.: Distance Oracle for unweighted graphs: breaking the quadratic barrier with constant additive error. In: Proceedings of the ICALP (1) pp. 609–621 (2008)Google Scholar
  8. 8.
    Baswana, S., Kavitha, T.: Faster Algorithms for Approximate Distance Oracles and All-Pairs Small Stretch Paths. In: Proc. 47th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 591–602. IEEE, Los Alamitos (2006)Google Scholar
  9. 9.
    Baswana, S., Telikepalli, K., Mehlhorn, K., Pettie, S.: New construction of (α,β)-spanners and purely additive spanners. In: Proceedings of 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 672–681 (2005)Google Scholar
  10. 10.
    Baswana, S., Sen, S.: A simple linear time algorithm for computing a (2k − 1)-spanner of O(kn 1 + 1/k) size in weighted graphs. In: Proceedings of the 30th International Colloquium on Automata, Languages and Programming (ICALP), pp. 384–396 (2003)Google Scholar
  11. 11.
    Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in \(\tilde{O}(n^2)\) time. In: Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 271–280 (2004)Google Scholar
  12. 12.
    Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in expected O(n 2) time. ACM Transactions on Algorithms 2, 557–577 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Baswana, S., Sen, S.: A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs. Random Structures and Algorithms 30, 532–563 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. In: Proceedings of 39th Annual ACM Symposium on Theory of Computing, pp. 590–598 (2007)Google Scholar
  15. 15.
    Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t. SIAM Journal on Computing 28, 210–236 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cohen, E., Zwick, U.: All-pairs small stretch paths. Journal of Algorithms 38, 335–353 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9, 251–280 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorothms. MIT Press, Cambridge (1990)Google Scholar
  19. 19.
    Dor, D., Halperin, S., Zwick, U.: All pairs almost shortest paths. Siam Journal on Computing 29, 1740–1759 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Elkin, M.: Computing almost shortest paths. ACM Transactions on Algorithms (TALG) 1, 282–323 (2005)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Elkin, M., Peleg, D.: Strong inapproximability of the basic k-spanner problem. In: Proc. of 27th International Colloquium on Automata, Languages and Programming, pp. 636–648 (2000)Google Scholar
  22. 22.
    Elkin, M., Peleg, D.: (1 + ε,β)-spanner construction for general graphs. SIAM Journal of Computing 33, 608–631 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Erdős, P.: Extremal problems in graph theory. In: Theory of Graphs and its Applications (Proc. Sympos. Smolenice,1963), pp. 29–36. Publ. House Czechoslovak Acad. Sci., Prague (1964)Google Scholar
  24. 24.
    Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with O(1) worst case time. Journal of Association of Computing Machinery 31, 538–544 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs. Theoretical Computer Science 312, 47–74 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Peleg, D., Schaffer, A.A.: Graph spanners. Journal of Graph Theory 13, 99–116 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate distance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Shoshan, A., Zwick, U.: All pairs shortest paths in undirected graphs with integer weights. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS), pp. 605–615 (1999)Google Scholar
  29. 29.
    Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of 13th ACM Symposium on Parallel Algorithms and Architecture, pp. 1–10 (2001)Google Scholar
  30. 30.
    Thorup, M., Zwick, U.: Approximate distance oracles. Journal of Association of Computing Machinery 52, 1–24 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors. In: Proceedings of 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 802–809 (2006)Google Scholar
  32. 32.
    Zwick, U.: Exact and approximate distances in graphs - A survey. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 33–48. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  33. 33.
    Zwick, U.: All-pairs shortest paths using bridging sets and rectangular matrix multiplication. Journal of Association of Computing Machinery 49, 289–317 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sandeep Sen
    • 1
  1. 1.Department of Comp. Sc. & Engg.Indian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations