The Planar k-Means Problem is NP-Hard

  • Meena Mahajan
  • Prajakta Nimbhorkar
  • Kasturi Varadarajan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5431)

Abstract

In the k-means problem, we are given a finite set S of points in \(\Re^m\), and integer k ≥ 1, and we want to find k points (centers) so as to minimize the sum of the square of the Euclidean distance of each point in S to its nearest center. We show that this well-known problem is NP-hard even for instances in the plane, answering an open question posed by Dasgupta [6].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-Hardness of Euclidean Sum-of-Squares Clustering. Technical Report G-2008-33, Les Cahiers du GERAD (to appear in Machine Learning) (April 2008)Google Scholar
  2. 2.
    Allender, E., Datta, S., Roy, S.: The directed planar reachability problem. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 238–249. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Arthur, D., Vassilvitskii, S.: Worst-case and smoothed analysis of the ICP algorithm, with an application to the k-means method. In: Proc. IEEE Symp. Foundations of Computer Science (2006)Google Scholar
  4. 4.
    Arthur, D., Vassilvitskii, S.: How slow is the k-means method? In: Proc. Symp. on Comput. Geom. (2006)Google Scholar
  5. 5.
    Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. In: Proc. ACM-SIAM Symp. Discrete Algorithms (2007)Google Scholar
  6. 6.
    Dasgupta, S.: The hardness of k-means clustering. Technical Report CS2007-0890, University of California, San Diego (2007)Google Scholar
  7. 7.
    de la Vega, F., Karpinski, M., Kenyon, C.: Approximation schemes for clustering problems. In: Proc. ACM Symp. Theory of Computing, pp. 50–58 (2003)Google Scholar
  8. 8.
    Drineas, P., Friexe, A., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs via the singular value decomposition. Machine Learning 56, 9–33 (2004)CrossRefMATHGoogle Scholar
  9. 9.
    Gibson, M., Kanade, G., Krohn, E., Pirwani, I., Varadarajan, K.: On clustering to minimize the sum of radii. In: Proc. ACM-SIAM Symp. Discrete Algorithms (2008)Google Scholar
  10. 10.
    Har-Peled, S., Sadri, B.: How fast is the k-means method? In: Proc. ACM-SIAM Symp. Discrete Algorithms, pp. 877–885 (2005)Google Scholar
  11. 11.
    Inaba, M., Katoh, N., Imai, H.: Applications of weighted Voronoi diagrams and randomization to variance-based clustering. In: Proc. Annual Symp. on Comput. Geom., pp. 332–339 (1994)Google Scholar
  12. 12.
    Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: A local search approximation algorithm for k-means clustering. Comput. Geom. 28, 89–112 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kumar, A., Sabharwal, Y., Sen, S.: A simple linear time (1 + ε) approximation algorithm for k-means clustering in any dimensions. In: Proc. IEEE Symp. Foundations of Computer Science, pp. 454–462 (2004)Google Scholar
  14. 14.
    Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: Proc. 21st Ann. IEEE Symp. Foundations of Computer Science, pp. 270–281 (1980)Google Scholar
  15. 15.
    Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11, 329–343 (1982)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Information Theory 28, 129–136 (1982)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Megiddo, N., Supowit, K.: On the complexity of some common geometric location problems. SIAM J. Comput. 13, 182–196 (1984)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Ostrovsky, R., Rabani, Y., Schulman, L., Swamy, C.: The effectiveness of Lloyd-type methods for the k-means problem. In: Proc. IEEE Symp. Foundations of Computer Science (2006)Google Scholar
  19. 19.
    Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Transactions on Computers 30, 135–140 (1981)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Meena Mahajan
    • 1
  • Prajakta Nimbhorkar
    • 1
  • Kasturi Varadarajan
    • 2
  1. 1.The Institute of Mathematical SciencesChennaiIndia
  2. 2.The University of IowaIowa CityUSA

Personalised recommendations