Advertisement

Coordinated Control and Range Imaging for Mobile Manipulation

  • Dean Anderson
  • Thomas M. Howard
  • David Apfelbaum
  • Herman Herman
  • Alonzo Kelly
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 54)

Introduction

Mobile manipulators currently deployed for explosive ordinance disposal are typically controlled via crude forms of teleoperation.Manipulator joints are actuated individually in joint space, making precise motions in state space difficult. Scene understanding is limited, as monocular cameras provide little (if any) depth information. Furthermore, the operator must manually coordinate the manipulator articulation with the positioning of the mobile base. These limitations place greater demands on the operator, decrease task efficiency and can increase exposure in dangerous environments.

In this paper, we demonstrate several enabling technologies for interacting with and operating mobile manipulators, including a “click-and-grab” interface for coordinated motion and manipulation. This includes coordinated joint movement for end-effector position control, a flash LADAR to provide depth information, and automatic trajectory generation to autonomously position the mobile base and manipulator.

Keywords

Mobile Manipulator Range Image Trajectory Generation Motion Planner Vehicle Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brock, O., Khatib, O., Viji, S.: Elastic strips: A framework for motion generation in human environments. International Journal of Robotics Research 21(12), 1031–1052 (2002)CrossRefGoogle Scholar
  2. 2.
    Carriker, W., Khosla, P., Krogh, B.: Path planning for mobile manipulators for multiple task execution. IEEE Transactions on Robotics and Automation, 403–408 (1991)Google Scholar
  3. 3.
    Desai, J., Kumar, V.: Nonholonomic motion planning for multiple mobile manipulators (1997), http://citeseer.ist.psu.edu/desai97nonholonomic.html
  4. 4.
    Galicki, M.: Inverse kinematic solution to mobile manipulators. International Journal of Robotics Research 22(12), 1041–1064 (2003)CrossRefGoogle Scholar
  5. 5.
    Howard, T.M., Green, C., Ferguson, D., Kelly, A.: State space sampling of feasible motions for high performance mobile robot navigation in complex environments. Journal of Field Robotics 25(6-7), 325–345 (2008)CrossRefGoogle Scholar
  6. 6.
    Howard, T.M., Kelly, A.: Optimal rough terrain trajectory generation for wheeled mobile robots. International Journal of Robotics Research 26(2), 141–166 (2007)CrossRefGoogle Scholar
  7. 7.
    Jackel, L., Krotkov, E., Perschbacher, M., Pippine, J., Sullivan, C.: The DARPA LAGR program: Goals, challenges, methodology, and phase I results. Journal of Field Robotics 23, 945–973 (2006)CrossRefGoogle Scholar
  8. 8.
    Möller, T., Kraft, H., Frey, J., Albrech, M., Lange, R.: Robust 3D measurement with pmd sensors. In: Proceedings of the First Range Imaging Research Dat at ETH Zurich (2005) ISBN 3-906467-57-0Google Scholar
  9. 9.
    Sciavicco, L., Sciliano, B.: Modeling and Control of Robot Manipulators. Springer, Heidelberg (2000)Google Scholar
  10. 10.
    Seraji, H.: A unified approach to motion control of mobile manipulators. The International Journal of Robotics Research 17(2), 107–118 (1998)CrossRefGoogle Scholar
  11. 11.
    Snyder, R.G.: Robots assist in search and rescue efforts at wtc. IEEE Robotics and Automation Magazine, 26–28 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dean Anderson
    • 1
  • Thomas M. Howard
    • 1
  • David Apfelbaum
    • 1
  • Herman Herman
    • 1
  • Alonzo Kelly
    • 1
  1. 1.Robotics InstituteCarnegie Mellon UniversityPittsburgh 

Personalised recommendations