Centromere pp 53-76

Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 48)

Centromere-Competent DNA: Structure and Evolution

Chapter

Abstract

Although extant data favour centromere being an epigenetic structure, it is also clear that centromere formation is based on DNA, in particular, tandemly repeated satellite DNA and its transcripts. Presence of conserved structural motifs within satellite DNAs such as periodically distributed AT tracts, protein binding sites, or promoter elements indicate that despite sequence flexibility, there are structural determinants that are prerequisite for centromere function. In addition, existence of functional centromeric DNA transcripts indicates possible importance of structural elements at the level of RNA secondary or tertiary structure. Rapid centromere evolution is explained by homologous recombination followed by extrachromosomal rolling circle replication. This could lead to amplification of different satellite sequences within a genome. However, only those satellites that have inherent centromere-competence in the form of structural requirements necessary for centromere function are after amplification fixed in a population as a new centromere.

References

  1. Alexandrov I, Kazakov A, Tumeneva I, Shepelev V, Yurov Y (2001) Alpha-satellite DNA of primates: old and new families. Chromosoma 110:253–266PubMedGoogle Scholar
  2. Alexiadis V, Ballestas ME, Sanchez C, Winokur S, Vedanarayanan V, Warren M, Ehrilch M (2007) RNAPol-ChIP analysis of transcription from FSHD-linked tandem repeats and satellite DNA. Biochim Biophys Acta 1796:29–40Google Scholar
  3. Allshire RC, Nimmo ER, Ekwall K, Javerzat JP, Cranston G (1995) Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev 9:218–233PubMedGoogle Scholar
  4. Amor DJ, Choo KH (2002) Neocentromeres: role in human disease, evolution and centromere studies. Am J Hum Genet 71:695–714PubMedGoogle Scholar
  5. Assum G, Fink T, Steinbeisser T, Fisel KJ (1993) Analysis of human extrachromosomal DNA elements originating from different beta-satellite subfamilies. Hum Genet 91:489–495PubMedGoogle Scholar
  6. Baker RE, Rogers K (2005) Genetic and genomic analysis of the AT-rich centromere DNA element II of Saccharomyces cerevisiae. Genetics 171:1463–1475PubMedGoogle Scholar
  7. Basu J, Stromberg G, Compitello G, Willard HF, Van Bokkelen G (2005) Rapid creation of BAC-based human artificial chromosome vectors by transposition with synthetic alpha-satellite arrays. Nucleic Acids Res 33:587–596PubMedGoogle Scholar
  8. Bensasson D, Zarowiecki M, Burt A, Koufopanou V (2008) Rapid evolution of yeast centromeres in the abscence of drive. Genetics 178:2161–2167PubMedGoogle Scholar
  9. Bernard P, Maure JF, Partridge JF, Genier S, Javerzat JP, Allshire RC (2001) Requirement of heterochromatin for cohesion at centromeres. Science 21:2539–2542Google Scholar
  10. Bernstein E, Allis CD (2005) RNA meets heterochromatin. Genes Dev 19:1635–1655PubMedGoogle Scholar
  11. Black BE, Bassett EA (2008) The histone variant CENP-A and centromere specification. Curr Opin Cell Biol 20:91–100PubMedGoogle Scholar
  12. Blower MD, Nachury M, Heald R, Weis K (2005) A Rac-1 containing ribonucleoprotein is required for mitotic spindle assemby. Cell 121:223–234PubMedGoogle Scholar
  13. Bouzinba-Segard H, Guais A, Francastel C (2006) Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci USA 103:8709–8714PubMedGoogle Scholar
  14. Bruvo-Mad¯arić B, Plohl M, Ugarković Đ (2007) Wide distribution of related satellite DNA families within the genus Pimelia (Tenebrionidae). Genetica 130:35–42Google Scholar
  15. Bulazel KV, Ferreri GC, Eldridge MD, O’ Neill RJ (2007) Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages. Genome Biol 8:R170PubMedGoogle Scholar
  16. Bühler M, Haas W, Gygi SP, Moazed D (2007) RNAi-dependent and -independent RNA turnover mechanisms contribute to heterochromatic gene silencing. Cell 129:707–721PubMedGoogle Scholar
  17. Cesari M, Luchetti A, Passamonti M, Scali V, Mantovani B (2003) Polymerase chain reaction amplification of the Bag320 satellite family reveals the ancestral library and past gene conversion events in Bacillus rossius (Insecta Phasmatodea). Gene 312:289–295PubMedGoogle Scholar
  18. Charlesworth B, Langley CH, Stephan W (1986) The evolution of restricted recombination and the accumulation of repeated DNA sequences. Genetics 112:947–962PubMedGoogle Scholar
  19. Chen ES, Zhang K, Nicolas E, Cam HP, Zofall M, Grewal SI (2008) Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451:734–737PubMedGoogle Scholar
  20. Clarke L, Carbon J (1983) Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature 305:23–28PubMedGoogle Scholar
  21. Coats SR, Zhang Y, Epstein LM (1994) Transcription of satellite 2 DNA from the newt is driven by a snRNA type of promoter. Nucleic Acids Res 22:4697–4704PubMedGoogle Scholar
  22. Cooper JL, Henikoff S (2004) Adaptive evolution of the histone fold domain in centromeric histones. Mol Biol Evol 21:1712–1718PubMedGoogle Scholar
  23. Dalal Y, Furuyama T, Vermaak D, Henikoff S (2007) Structure, dynamics, and evolution of centromeric nucleosomes. Proc Natl Acad Sci USA. 104:15974–15981PubMedGoogle Scholar
  24. Dawe RK, Henikoff S (2006) Centromeres put epigenetics in the driver’s seat. Trends Biochem Sci 31:662–669PubMedGoogle Scholar
  25. Dobie KW, Hari KL, Maggert KA, Karpen GH (1999) Centromere proteins and chromosome inheritance: a complex affair. Curr Opin Genes Dev 9:206–217Google Scholar
  26. Dover GA (1986) Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends Genet 2:159–165Google Scholar
  27. Durajlija žinić S, Ugarković Đ, Cornudella L, Plohl M (2000) A novel interspersed type of organization of satellite DNAs in Tribolium madens heterochromatin. Chromosome Res 8:201–212Google Scholar
  28. Feliciello I, Picariello O, Chinali G (2005) The first characterisation of the overall variability of repetitive units in a species reveals unexpected features of satelite DNA. Gene 349:153–164PubMedGoogle Scholar
  29. Feliciello I, Picariello O, Chinali G (2006) Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA. Gene 383:81–92PubMedGoogle Scholar
  30. Ferbeyre G, Smith JM, Cedergren R (1998) Schistosome satellite DNA encodes active hammerhead-ribozymes. Mol Cell Biol 18:3880–3888PubMedGoogle Scholar
  31. Fitzgerald DJ, Dryden GL, Bronson EC, Williams JS, Anderson JN (1994) Conserved pattern of bending in satellite and nucleosome positioning DNA. J Biol Chem 269:21303–21314PubMedGoogle Scholar
  32. Folco HD, Pidoux AL, Urano T, Allshire RC (2008) Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319:94–97PubMedGoogle Scholar
  33. Frescas D, Guardavaccaro D, Kuchay SM, Kato H, Poleshko A, Basrur V, Elenitoba-Johnson KS, Katz RA, Pagano M (2008) KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state. Cell Cycle 7(29):3539–3547PubMedGoogle Scholar
  34. Fry K, Salser W (1977) Nucleotide sequences of HS-α satellite DNA from kangaroo rat Dipodomys ordii and characterisation of similar sequences in other rodents. Cell 12:1069–1084PubMedGoogle Scholar
  35. Grewal SI, Elgin SC (2007) Transcription and RNA interference in the formation of heterochromatin. Nature 447:399–406PubMedGoogle Scholar
  36. Grimes BR, Rhoades AA, Willard HF (2002) Alpha-satellite DNA and vector composition influence rates of human artificial chromosome formation. Mol Ther 5:798–805PubMedGoogle Scholar
  37. Hall SE, Kettler G, Preuss D (2003) Centromere satellites from Arabidopsis populations: maintenance of conserved and variable domains. Genome Res 13:195–205PubMedGoogle Scholar
  38. Harp JM, Uberbacher EC, Roberson AE, Palmer EL, Gewiess A, Bunick GJ (1996) X-ray diffraction analysis of crystals containing twofold symmetric nucleosome core particles. Acta Crystallogr D 52:283–288PubMedGoogle Scholar
  39. Hegemann JH, Fleig UN (1993) The centromere of budding yeast. Bioessays 15:451–460PubMedGoogle Scholar
  40. Henikoff S, Dalal Y (2005) Centromeric heterochromatin: what makes it unique. Curr Opin Genet Dev 15:177–184PubMedGoogle Scholar
  41. Heslop-Harrison JS, Murata M, Ogura Y, Schwarzacher T, Motoyoshi F (1999) Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis chromosomes. Plant Cell 11:31–42PubMedGoogle Scholar
  42. Huisinga KL, Elgin SCR (2009) Small RNA-directed heterochromatin formation in the context of development: What flies might learn from fission yeast. Biochim Biophys Acta 1789:3–16Google Scholar
  43. Jaco I, Canela A, Vera E, Blasco MA (2008) Centromere mitotic recombination in mammalian cells. J Cell Biol 181:885–92PubMedGoogle Scholar
  44. Jin W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581PubMedGoogle Scholar
  45. Jonstrup AT, Thomsen T, Wang Y, Knudsen BR, Koch J, Andersen AH (2008) Hairpin structures formed by alpha satellite DNA of human centromeres are cleaved by human topoisomerase II α. Nucleic Acids Res 36:6165–6175PubMedGoogle Scholar
  46. Kalitsis P (2008) Centromeres. In: Encyclopedia of life sciences (ELS). Wiley, ChichesterGoogle Scholar
  47. Kawabe A, Charlesworth D (2007) Patterns of DNA variation among three centromere satellite families in Arabidopsis halleri and A. lyrata. J Mol Evol 64:237–247PubMedGoogle Scholar
  48. Kellum R, Alberts BM (1995) Heterochromatin protein 1 is required for correct chromosome segregation in Drosophila embryos. J Cell Sci 108:1419–1431PubMedGoogle Scholar
  49. King K, Jobst J, Hemleben V (1995) Differential homogenisation and amplification of two satellite DNAs in the genus Cucurbita (Cucurbitaceae). J Mol Evol 4:996–1005Google Scholar
  50. Kipling D, Warburton PE (1997) Centromeres, CENP-B and Tigger too. Trends Genet 13:141–145PubMedGoogle Scholar
  51. Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2001) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 4. DNA Res 8:285–290PubMedGoogle Scholar
  52. Lee C, Wevrick R, Fisher RB, Ferguson-Smith MA, Lin CC (1997) Human centromeric DNAs. Hum Genet 100:291–304PubMedGoogle Scholar
  53. Lee HR, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA 102:11793–117998PubMedGoogle Scholar
  54. Li YX, Kirby ML (2003) Coordinated and conserved expression of alphoid repeat and alphoid repeat-tagged coding sequences. Dev Dynamics 228:72–81Google Scholar
  55. Lin CC, Li YC (2006) Chromosomal distribution and organization of three cervid satellite DNAs in Chinese water deer (Hydropotes inermis). Cytogenet Genome Res 114:147–154PubMedGoogle Scholar
  56. Lu J, Gilbert DM (2007) Proliferation-dependent and cell cycle-regulated transcription of mouse pericentromeric heterochromatin. J Cell Biol 179:411–421PubMedGoogle Scholar
  57. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8-angstrom resolution. Nature 389:251–260PubMedGoogle Scholar
  58. Ma J, Jackson SA (2006) Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Res 16:251–259PubMedGoogle Scholar
  59. Maddox PS, Oegema K, Desai A, Cheesman IM (2004) “Holo”er than thou: chromosome segregation and kinetochore function in C. elegans. Chromosome Res 12:641–653PubMedGoogle Scholar
  60. Maison C, Bailly D, Peters AH, Quivy JP, Roche D, Taddei A, Lachner M, Jenuwein T, Almouzni G (2002) Higher-order structure in pericentromeric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 30:329–334PubMedGoogle Scholar
  61. Malik HS, Henikoff S (2002) Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev 12:711–718PubMedGoogle Scholar
  62. Marshall OJ, Chuch AC, Wong LH, Choo KH (2008) Neocentromeres. new insights into centromere structure, disease, development, and karyotype evolution. Am J Hum Genet 82:261–282PubMedGoogle Scholar
  63. Martinez-Balbas A, Rodriguez-Campos A, Gracia-Ramirez M, Sainz J, Carrera P, Aymami J, Azorin F (1990) Satellite DNAs contain sequences that induce curvature. Biochemistry 29:2342–2348PubMedGoogle Scholar
  64. Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromere satellite. J Cell Biol 109:1963–1973PubMedGoogle Scholar
  65. Masumoto H, Nakano M, Ohzeki J (2004) The role of CENP-B and alpha-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres. Chromosome Res 12:543–556PubMedGoogle Scholar
  66. Meraldi P, McAinsh AD, Rheinbay E, Sorger PK (2006) Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 7:R23PubMedGoogle Scholar
  67. Meštrović N, Plohl M, Mravinac B, Ugarković, Đ (1998). Evolution of satellite DNAs from the genus Palorus- experimental evidence for the “library” hypothesis. Mol Biol Evol 15:1062–1068PubMedGoogle Scholar
  68. Meštrović N, Castagnone-Sereno P, Plohl M (2006) Interplay of selective pressure and stochastic events directs evolution of the MEL172 satellite DNA library in root-knot nematodes. Mol Biol Evol 23:2316–2325PubMedGoogle Scholar
  69. Metz A, Soret J, Vourc’h C, Tazi J, Jolly C (2004) A key role for stress-induced satellite III transcripts in the relocalization of splicing factors into nuclear stress granules. J Cell Sci 117:4551–4558PubMedGoogle Scholar
  70. Mravinac B, Plohl M, Meštrović N, Ugarković Đ (2002) Sequence of PRAT satellite DNA “frozen” in some coleopteran species. J Mol Evol 54:774–783PubMedGoogle Scholar
  71. Mravinac B, Plohl M, Ugarković Đ (2004) Conserved patterns in the evolution of Tribolium satellite DNAs. Gene 332:169–177PubMedGoogle Scholar
  72. Mravinac B, Plohl M, Ugarković Đ (2005) Preservation and high sequence conservation of satellite DNAs suggest functional constraints. J Mol Evol 61:542–550PubMedGoogle Scholar
  73. Murakami H, Goto DB, Toda T, Chen ES, Grewal SI, Martienssen RA, Yanagida M (2007) Ribonuclease Activity of Dis3 is required for mitotic progression and provides a possible link between heterochromatin and kinetochore function. PLoS ONE 3:e317Google Scholar
  74. Nasmyth K (2002) Segregating sister genomes: the molecular biology of chromosome separation. Science 288:559–565Google Scholar
  75. Navratilova A, Koblizkova A, Macas J (2008) Survey of extrachromosomal circular DNA derived from plant satellite repeats. BMC Plant Biol 8:90PubMedGoogle Scholar
  76. Nijman IJ, Lenstra JA (2001) Mutation and recombination in cattle satellite DNA: a feedback model for the evolution of satellite DNA repeats. J Mol Evol 52:361–371PubMedGoogle Scholar
  77. Ohzeki J, Nakano M, Okada T, Masumoto H (2002) CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J Cell Biol 159:765–775PubMedGoogle Scholar
  78. Okada T, Ohzeki J, Nakano M, Yoda K, Brinkley WR, Larionov V, Masumoto H (2007) CENP-B controls centromere formation depending on the chromatin context. Cell 131:187–1300Google Scholar
  79. Pezer Ž, Ugarković Đ (2008a) RNA Pol II promotes transcription of centromeric satellite DNA in Beetles. PLoS ONE 3:e1594Google Scholar
  80. Pezer Ž, Ugarković Đ (2008b) Role of non-coding RNA and heterochromatin in aneuploidy and cancer. Semin Cancer Biol 18:123–130Google Scholar
  81. Pezer Ž, Ugarković Đ (2009) Transcription of pericentromeric heterochromatin in beetles – satellite DNAs as active regulatory elements. Cytogenet Genome Res (in press)Google Scholar
  82. Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337PubMedGoogle Scholar
  83. Politi V, Perini G, Trazzi S, Pliss A, Raska I, Earnshaw WC, Della Valle G (2002) CENP-C binds the alpha-satellite DNA in vivo at specific centromere domains. J Cell Sci 11:2317–2327Google Scholar
  84. Pons J, Bruvo B, Petitpierre E, Plohl M, Ugarković D, Juan C (2004) Complex structural feature of satellite DNA sequences in the genus Pimelia (Coleoptera: Tenebrionidae): random differential amplification from a common “satellite DNA library”. Heredity 92:418–427PubMedGoogle Scholar
  85. Renault S, Roulex-Bonnin F, Periquet G, Bigot Y (1999) Satellite DNA transcription in Diadromus pulchellus (Hymenoptera). Insect Biochem Mol Biol 29:103–111PubMedGoogle Scholar
  86. Romanova LY, Deriagin GV, Mashkova TG, Tumeneva IG, Mushegian AR, Kisselev LL, Alexandrov IA (1996) Evidence for selection in evolution of alpha satellite DNA: the central role of CENP-B/pJα binding region. J Mol Biol 261:334–340PubMedGoogle Scholar
  87. Rudd MA, Wray GA, Willard HF (2006) The evolutionary dynamics of α-satellite. Genome Res 16:88–96PubMedGoogle Scholar
  88. Sanyal K, Baum M, Carbon J (2004) Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc Natl Acad Sci USA 101:1134–11379Google Scholar
  89. Schueler MG, Sullivan B (2006) Structural and functional dynamics of human centromeric heterochromatin. Annu Rev Genomics Hum Genet 7:301–313PubMedGoogle Scholar
  90. Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115PubMedGoogle Scholar
  91. Schueler MG, Dunn JM, Bird CP, Ross MT, Viggiano L; NISC Comparative Sequencing Program, Rocchi M, Willard HF, Green ED (2005) Progressive proximal expansion of the primate X chromosome centromere. Proc Natl Acad Sci USA 102:10563–10568Google Scholar
  92. Slamovits CH, Cook JA, Lessa EP, Rossi MS (2001) Recurrent amplifications and deletions of satellite DNA accompanied chromosomal diversification in South American tuco-tucos (genus Ctenomys, Rodentia: Octodontidae): a phylogenetic approach. Mol Biol Evol 18:1708–1719PubMedGoogle Scholar
  93. Smith PG (1976) Evolution of repeated sequences by unequal crossover. Science 191:528–535PubMedGoogle Scholar
  94. Stephan W (1986) Recombination and the evolution of satellite DNA. Genet Res 47:167–174PubMedGoogle Scholar
  95. Stephan W (2007) Evolution of genome organization. In: Encyclopedia of Life Sciences (ELS). Wiley, ChichesterGoogle Scholar
  96. Sun X, Le HD, Janice M, Wahlstrom JM, Karpen GH (2003) Sequence analysis of a functional Drosophila centromere. Genome Res 13:182–194PubMedGoogle Scholar
  97. Tal M, Shimron F, Yagil G (1994) Unwound regions in yeast centromere IV DNA. J Mol Biol 243:179–189PubMedGoogle Scholar
  98. Talbert PB, Bryson TD, Henikoff S (2004) Adaptive evolution of centromere proteins in plants and animals. J Biol 3:18PubMedGoogle Scholar
  99. Takasuka TE, Cioffi A, Stein A (2008) Sequence information encoded in DNA that may influence long-range chromatin structure correlates with human chromosome functions. PLoS ONE 3:e2643PubMedGoogle Scholar
  100. Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci USA 101:15986–15991PubMedGoogle Scholar
  101. Ugarković Đ (2005) Functional elements residing within satellite DNAs. EMBO Rep 6:1035–1039PubMedGoogle Scholar
  102. Ugarković Đ (2008a) Evolution of Alpha satellite DNA. In: Encyclopedia of Life Sciences (ELS). Wiley, ChichesterGoogle Scholar
  103. Ugarković Đ (2008b) Satellite DNA libraries and centromere evolution. Open Evol J 2:1–6Google Scholar
  104. Ugarković Đ, Plohl M (2002) Variation in satellite DNA profiles – causes and effects. EMBO J 21:5955–5959PubMedGoogle Scholar
  105. Ugarković Đ, Podnar M, Plohl M (1996a) Satellite DNA of the red flour beetle Tribolium castaneum-comparative study of satellites from the genus Tribolium. Mol Biol Evol 13:1059–1066Google Scholar
  106. Ugarković Đ, Durajlija S, Plohl M (1996b) Evolution of Tribolium madens (Insecta, Coleoptera) satellite DNA through DNA inversion and insertion. J Mol Evol 42:350–358Google Scholar
  107. Ugarković ĐL, Plohl M, Lucijanić-Justić V, Borštnik B (1992) Detection of satellite DNA in Palorus atzeburgii: Analysis of curvature profiles and comparison with Tenebrio molitor satellite DNA. Biochimie 74:1075–1082PubMedGoogle Scholar
  108. Vagnarelli P, Ribeiro SA, Earnshaw WC (2008) Centromeres: old tales and new tools. FEBS Lett 582:1950–1959PubMedGoogle Scholar
  109. Verdel A, Jia S, Gerber S, Suglyama T, Gygi S, Grewal SI, Moazed D (2004) RNAi-mediated targeting of heterochromatin with the RITS complex. Science 303:672–676PubMedGoogle Scholar
  110. Vershinin AV, Alkhimova EG, Heslop-Harrison JS (1996) Molecular diversification of tandemly organised sequences and heterochromatic chromosome regions in some Triticeae species. Chromosome Res 4:517–525PubMedGoogle Scholar
  111. Vogt P (1990) Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved “chromatin folding code”. Hum Genet 84:301–336PubMedGoogle Scholar
  112. Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS, Martienssen RA (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837PubMedGoogle Scholar
  113. Wang F, Koyama N, Nishida H, Haraguchi T, Reith W, Tsukamoto T (2006) The assembly and maintenance of heterochromatin initiated by transgene repeats are independent of the RNA interference pathway in mammalian cells. Mol Cell Biol 26:4028–4040PubMedGoogle Scholar
  114. Westermann S, Drubin DG, Barnes G (2007) Structures and functions of yeast kinetochore complexes. Ann Rev Biochem 76:563–592PubMedGoogle Scholar
  115. Win TZ, Stevenson AL, Wang SW (2006) Fission yeast Cid12 has dual functions in chromosome segregation and checkpoint control. Mol Cell Biol 26:4435–4447PubMedGoogle Scholar
  116. Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA, Northrop EL, Hannan R, Saffery R, Shaw ML, Williams E, Choo KHA (2007) Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17:1146–1160PubMedGoogle Scholar
  117. Yamagishi Y, Sakuno T, Shimura M, Watanabe Y (2008) Heterochromatin links to centromeric protection by recruiting shugoshin. Nature 455:251–256PubMedGoogle Scholar
  118. Zhang Y, Huang YC, Zhang L, Li Y, Lu TT, Lu YQ, Feng Q, Zhao Q, Cheng ZK, Xue YB, Wing RA, Han B (2004) Structural features of the rice chromosome 4 centromere. Nucleic Acids Res 32:2023–2030PubMedGoogle Scholar
  119. Zhu L, Chou SH, Reid BR (1996) A single G-to-C change causes human centromere TGGAA repeats to fold back into hairpins. Proc Natl Acad Sci USA 93:12159–12164PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Molecular BiologyRud¯er Bošković InstituteZagreb

Personalised recommendations