Machine Learning and Statistical Approaches to Support the Discrimination of Neuro-degenerative Diseases Based on Gait Analysis

  • Huiru Zheng
  • Mingjing Yang
  • Haiying Wang
  • Sally McClean
Part of the Studies in Computational Intelligence book series (SCI, volume 189)


Amyotrophic lateral sclerosis, Parkinson’s disease and Huntington’s disease are three neuro-degenerative diseases. In all these diseases, severe disturbances of gait and gait initiation are frequently reported. In this paper, we explore the feasibility of using machine learning and statistical approaches to support the discrimination of these three diseases based on gait analysis. A total of three supervised classification methods, namely support vector machine, KStar and Random Forest, were evaluated on a publicly-available gait dataset. The results demonstrate that it is feasible to apply computational classification techniques in characterise these three diseases with the features extracted from gait cycles. Results obtained show that using selected 4 features based on maximum relevance and minimum redundancy strategy can achieve reasonably high classification accuracy while 5 features can achieve the best performance. The continual increase of the number of features does not significantly improve classification performance.


classification feature selection neuro-degenerative diseases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ALS Association: What is ALS? (September 10, 2007),
  2. 2.
    Kyriazis, V.: Gait analysis techniques. J. Orthopaed Traumatol. 1, 1–6 (2001)CrossRefGoogle Scholar
  3. 3.
    Glodfarb, B.J., Simon, S.R.: Gait analysis in patients with amyotrophic lateral sclerosis. Arch. Phys. Med. rehabi. 65, 61–65 (1984)Google Scholar
  4. 4.
    Hausdorff, J.M., Lertratanakul, A., Cudkowicz, M.E., Peterson, A.L., Kaliton, D., Goldberger, A.L.: Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J. Appl. Physiol. 88, 2045–2053 (2000)Google Scholar
  5. 5.
    Blin, Ferreandez, A., Serratrice, G.: Quantitative analysis of gait in Parkinson patients: increased variability of stride length. J. Neuroogy Sci. 98, 91–97 (1990)CrossRefGoogle Scholar
  6. 6.
    Hausdorff, J.M., Cudkowicz, M.E., Firtion, R., Wei, J.Y., Goldberger, A.L.: Gait variability and basal ganglia disorders: stride-to-stride variations in gait cycle timing in Parkinson’s and Huntingto’s disease. Mov. Disord. 13, 428–437 (1998)CrossRefGoogle Scholar
  7. 7.
    Simon, S.: Quantification of human motion: gait analysis – benefits and limitations to its application to clinical problems. Journal of Biomechanics 37, 1869–1880 (2004)CrossRefGoogle Scholar
  8. 8.
    Prentice, S., Patla, A.E.: Modelling of some aspects of skilled locomotor behaviour using artificial neural networks. In: Begg, R., Palaniswami, M. (eds.) Computational Intelligence for Movement Sciences. IDEA group publishing (2006)Google Scholar
  9. 9.
    Barton, J.G., Lee, A.: An application of neural networks for distinguishing gait patterns on the basis of hip-knee joint angle diagrams. IGait & posture 5, 28–33 (1997)CrossRefGoogle Scholar
  10. 10.
    Su, F.C., Wu, W.L.: Design and testing of a generic algorithm neural network in the assessment of gait patterns. Medical engineering and Physics 22, 67–74 (2000)CrossRefGoogle Scholar
  11. 11.
    Begg, R., Palaniswami, M.: Recognition of gait patterns using support vector machines. In: Begg, R., Palaniswami, M. (eds.) Computational Intelligence for Movement Sciences: Neural Networks and other Emerging Techniques. IDEA group publishing (2006)Google Scholar
  12. 12.
    Mierswa, M., Wurst, R., Klinkenberg, M., Scholz, Timm, E.: YALE: Rapid Prototyping for Complex Data Mining Tasks. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2006) (2006) Google Scholar
  13. 13.
    Rose, J., Gamble, J.G.: Human Walking. Williams & Wilkins, London (1994)Google Scholar
  14. 14.
    Yuan, H., Tseng, S.-S., Gangshan, W., Fuyan, Z.: A two-phase feature selection method using both filter and wrapper. In: Proceedings of the IEEE Conference on Systems, Man, and Cybernetics, vol. 2, pp. 132–136. IEEE Computer Society Press, Piscataway (1999)Google Scholar
  15. 15.
    Peng, H.C., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1226–1238 (2005)CrossRefGoogle Scholar
  16. 16.
    Hausdorff, J.M., Mitchell, S.L., Firtion, R., Peng, C.K., Cudkowicz, M.E., Wei, J.Y., Goldberger, A.L.: Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. J. Applied Physiology 82, 262–269 (1997)Google Scholar
  17. 17.
    Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 101(23), e215–e220 (2000); Circulation Electronic Pages, Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Huiru Zheng
    • 1
  • Mingjing Yang
    • 2
  • Haiying Wang
    • 1
  • Sally McClean
    • 3
  1. 1.School of Computing and MathematicsUniversity of UlsterN. Ireland, UK
  2. 2.College of physics and Information EngineeringFuzhou UniversityChina
  3. 3.School of Computing and Information EngineeringUniversity of UlsterN. Ireland, UK

Personalised recommendations