Semantic Smart Homes: Towards Knowledge Rich Assisted Living Environments

  • Liming Chen
  • Chris Nugent
  • Maurice Mulvenna
  • Dewar Finlay
  • Xin Hong
Part of the Studies in Computational Intelligence book series (SCI, volume 189)


The technologies underpinning smart homes offer promising solutions in the realm of assistive living. At present, there are a number of smart home applications being developed with a raft of technologies that provide fragments of the necessary functionality. Nevertheless, there is currently a major gap between these endeavours and the vision of smart homes in which there are adaptive, personalised and context-aware assistance capabilities. To bridge this divide between practice and aspiration, this Chapter introduces semantic smart homes – a novel concept whose aim is to move from the current state-of-the-art of smart home technologies to the future infrastructure that is needed to support the full richness of the smart home vision. We present a conceptual system architecture for semantic smart homes and elaborate functions and explore the interplay of constituent components. The Chapter focuses predominantly on the methodology of semantic modelling, content generation and management. We illustrate the potential of the semantic smart homes metaphor through a number of use scenarios.


Smart homes semantic Web assistive living knowledge environment ontology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Center for Future Health, University of Rochester, Smart Medical Home Research Laboratory, June 12 (2007),
  2. 2.
    MIT Department if Architecture, House_n The PlaceLab, June 12 (2007),
  3. 3.
    Georgia Institute of Technology, The Aware Home, June 12 (2007),
  4. 4.
    Dittmar, A., Axisa, F., Delhomme, G., Gehin, C.: New concepts and technologies in home care and ambulatory monitoring. In: Lymberis, A., de Rossi, D. (eds.) Wearable eHealth Systems for Personalised Health Management: State of the Art and Future Challenges, pp. 9–35. IOS Press, Amsterdam (2004)Google Scholar
  5. 5.
    Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The gator tech smart house: a programmable pervasive space. IEEE Computer, 64–74 (2005)Google Scholar
  6. 6.
    Alive Technologies,
  7. 7.
    PhMon Personal Health Monitoring System with Microsystem Sensor Technology,
  8. 8.
    OSGi – The dynamic module system for Java,
  9. 9.
    Konnex – Open standard for home and building control,
  10. 10.
    Philipose, M., Fishkin, K.P., Perkowitz, M., Patterson, D.J., Fox, D., Kautz, H., Hahnel, D.: Inferring activities from interactions with objects. IEEE Pervasive Computing, 50–57 (2004)Google Scholar
  11. 11.
    Bouchard, B., Giroux, S., Bouzouane, A.: A logical approach to ADL recognition foralzheimer’s patients. In: Proc. of the 4th International Conference on Smart Homes and Health Telematic (ICOST 2006), pp. 1–8 (2006)Google Scholar
  12. 12.
    Hong, X., Nugent, C.D., Mulvenna, M., McClean, S., Scotney, B., Devlin, S.: Evidential fusion of sensor data for activity recognition in smart homes. Pervasive and Mobile Computing (in press) (2008)Google Scholar
  13. 13.
    Davies, J., Studer, R., Warren, P.: Semantic Web Technologies: Trends and Research in Ontology-based Systems. Wiley, Chichester (2006)Google Scholar
  14. 14.
    Pollack, M.: Intelligent technology for an aging population: the use of AI to assist elders with cognitive impairment. AI Magazine 26(2), 9–24 (2005)Google Scholar
  15. 15.
    Staab, S., Studer, R.: Handbook on Ontologies (International Handbooks on Information Systems). Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Davies, J., Fensel, D., van Harmelen, F.: Towards the Semantic Web: Ontology-Driven Knowledge Management. Wiley, Chichester (2003)Google Scholar
  17. 17.
    Strang, T., Linnhoff-Popien, C., Frank, K.: CoOL: A Context Ontology Language to Enable Contextual Interoperability. In: Stefani, J.-B., Demeure, I., Hagimont, D. (eds.) DAIS 2003. LNCS, vol. 2893, pp. 236–247. Springer, Heidelberg (2003)Google Scholar
  18. 18.
    Chen, H., Finin, T., Joshi, A.: An Ontology for Context-Aware Pervasive Computing Environments. Special Issue on Ontologies for Distributed Systems, Knowledge Engineering Review (2003)Google Scholar
  19. 19.
    Gu, T., Wang, X.H., Pung, H.K., Zhang, D.Q.: An Ontology-based Context Model in Intelligent Environments. In: Proceedings of Communication Networks and Distributed Systems Modeling and Simulation Conference, San Diego, California, USA (2004)Google Scholar
  20. 20.
    Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx, T., Berbers, Y., Coninx, K., Jonckers, V., De Bosschere, K.: Towards an extensible context ontology for ambient intelligence. In: Markopoulos, P., Eggen, B., Aarts, E., Crowley, J.L. (eds.) EUSAI 2004. LNCS, vol. 3295, pp. 148–159. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Roussaki, I., Strimpakou, M., Pils, C., Kalatzis, N., Anagnostou, M.: Hybrid context modelling: A location-based scheme using ontologies. In: Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW 2006) (2006)Google Scholar
  22. 22.
    Latfi, F., Lefebvre, B., Descheneaux, C.: Ontology-Based Management of the Telehealth Smart Home, Dedicated to Elderly in Loss of Cognitive Autonomy. In: Proceedings of the OWLED 2007 Workshop on OWL: Experiences and Directions (2007),
  23. 23.
    Klein, M., Schmidt, A., Lauer, R.: Ontology-Centred Design of an Ambient Middleware for Assisted Living: The Case of SOPRANO. In: Proceeding of Towards Ambient Intelligence: Methods for Cooperating Ensembles in Ubiquitous Environments (AIM-CU), 30th Annual German Conference on Artificial Intelligence (KI 2007), Osnabrück (2007)Google Scholar
  24. 24.
    The EU SOPRANO IP project,
  25. 25.
    The EU ASK-IT IP project,
  26. 26.
  27. 27.
    Chinnici, R., Gudgin, M., Moreau, J., Weerawarana, S.: Web Services Description Language (WSDL) 1.2, W3C Working Draft, July 9 (2002),
  28. 28.
    Johnston, W.: Semantic Services for Grid-Based, Large-Scale Science. IEEE Intelligent Systems 19(1), 34–39 (2004)CrossRefGoogle Scholar
  29. 29.
  30. 30.
    The time ontology in OWL,
  31. 31.
    Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The instance store: DL reasoning with large numbers of individuals. In: Proc. 2004 Description Logic Workshop, pp. 31–40 (2004)Google Scholar
  32. 32.
    Harris, S., Gibbins, N.: 3store: Efficient Bulk RDF Storage. In: Proc. 1st International Workshop on Practical and Scalable Semantic Systems (PSSS 2003), pp. 1–15 (2003)Google Scholar
  33. 33.
    Nugent, C.D., Finlay, D.D., Davies, R.J., Mulvenna, M.D., Wallace, J.G., Paggetti, C., Tamburini, E., Black, N.D.: The next generation of mobile medication management solutions. International Journal of Electronic Healthcare 3(1), 7–31 (2007)CrossRefGoogle Scholar
  34. 34.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 161–180. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  35. 35.
    Haarslev, V., Möller, R.: Racer: A Core Inference Engine for the Semantic Web. In: Proc. 2nd International Workshop on Evaluation of Ontology-based Tools (EON2003), ISWC 2003, pp. 27-36 (2003) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Liming Chen
    • 1
  • Chris Nugent
    • 1
  • Maurice Mulvenna
    • 1
  • Dewar Finlay
    • 1
  • Xin Hong
    • 1
  1. 1.Computer Science Research Institute and School of Computing and Mathematics, Faculty of Computing and EngineeringUniversity of UlsterNewtownabbeyNorthern Ireland, UK

Personalised recommendations