A Local Graph Partitioning Algorithm Using Heat Kernel Pagerank

  • Fan Chung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5427)


We give an improved local partitioning algorithm using heat kernel pagerank, a modified version of PageRank. For a subset S with Cheeger ratio (or conductance) h, we show that there are at least a quarter of the vertices in S that can serve as seeds for heat kernel pagerank which lead to local cuts with Cheeger ratio at most \(O(\sqrt{h})\), improving the previously bound by a factor of \(\sqrt{log|S|}\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vectors. In: Proceedings of the 47th Annual IEEE Symposium on Founation of Computer Science (FOCS 2006), pp. 475–486 (2006)Google Scholar
  2. 2.
    Andersen, R., Chung, F.: Detecting sharp drops in pageRank and a simplified local partitioning algorithm. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)CrossRefGoogle Scholar
  4. 4.
    Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Gunning, R.C. (ed.) Problems in Analysis, pp. 195–199. Princeton Univ. Press, Princeton (1970)Google Scholar
  5. 5.
    Chung, F.: Spectral Graph Theory. AMS Publications (1997)Google Scholar
  6. 6.
    Chung, F.: Random walks and local cuts in graphs. LAA 423, 22–32 (2007)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Chung, F.: The heat kernel as the pagerank of a graph. PNAS 105(50), 19735–19740 (2007)CrossRefGoogle Scholar
  8. 8.
    Chung, F., Oden, K.: Weighted graph Laplacians and isoperimetric inequalities. Pacific Journal of Mathematics 192, 257–273 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chung, F., Yau, S.-T.: Coverings, heat kernels and spanning trees. Electronic Journal of Combinatorics 6, R12 (1999)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Chung, F., Lu, L.: Complex Graphs and Networks. In: CBMS Regional Conference Series in Mathematics, vol. 107, pp. viii+264. AMS Publications, RI (2006)Google Scholar
  11. 11.
    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symbolic Comput. 9, 251–280 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the theory of NP-completeness, pp. x+338. W.H. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  13. 13.
    Jerrum, M., Sinclair, A.J.: Approximating the permanent. SIAM J. Computing 18, 1149–1178 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kannan, R., Vempala, S., Vetta, A.: On clusterings: Good, bad and spectral. JACM 51, 497–515 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lovász, L., Simonovits, M.: The mixing rate of Markov chains, an isoperimetric inequality, and computing the volume. In: 31st IEEE Annual Symposium on Foundations of Computer Science, pp. 346–354 (1990)Google Scholar
  16. 16.
    Lovász, L., Simonovits, M.: Random walks in a convex body and an improved volume algorithm. Random Structures and Algorithms 4, 359–412 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mihail, M.: Conductance and Convergence of Markov Chains: A Combinatorial treatment of Expanders. In: FOCS, pp. 526–531 (1989)Google Scholar
  18. 18.
    Perron, O.: Theorie der algebraischen Gleichungen, II (zweite Auflage). de Gruyter, Berlin (1933)Google Scholar
  19. 19.
    Spielman, D., Teng, S.-H.: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 81–90 (2004)Google Scholar
  20. 20.
    Schoen, R.M., Yau, S.T.: Differential Geometry. International Press, Cambridge (1994)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Fan Chung
    • 1
  1. 1.University of California at San DiegoLa JollaUSA

Personalised recommendations