Advertisement

Evolution of Retinal Blood Vessel Segmentation Methodology Using Wavelet Transforms for Assessment of Diabetic Retinopathy

  • D. J. Cornforth
  • H. F. Jelinek
  • M. J. Cree
  • J. J. G. Leandro
  • J. V. B. Soares
  • R. M. CesarJr.
Part of the Studies in Computational Intelligence book series (SCI, volume 187)

Introduction

Diabetes is a chronic disease that affects the body’s capacity to regulate the amount of sugar in the blood. One in twenty Australians are affected by diabetes, but this figure is conservative, due to the presence of subclinical diabetes, where the disease is undiagnosed, yet is already damaging the body without manifesting substantial symptoms. This incidence rate is not confined to Australia, but is typical of developed nations, and even higher in developing nations. Excess sugar in the blood results in metabolites that cause vision loss, heart failure and stroke, and damage to peripheral blood vessels.These problems contribute significantly to the morbidity and mortality of the Australian population, so that any improvement in early diagnosis would therefore represent a significant gain. The incidence is projected to rise, and has already become a major epidemic [16].

Keywords

Diabetic Retinopathy Optic Disc Mathematical Morphology Morlet Wavelet Adaptive Thresholding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antoine, J.P., Barache, D., Cesar Jr., R.M., da Costa, L.: Shape characterization with the wavelet transform. Signal Processing 62(3), 265–290 (1997)MATHCrossRefGoogle Scholar
  2. 2.
    Arnéodo, A., Decoster, N., Roux, S.G.: A wavelet-based method for multifractal image analysis. I. Methodology and test applications on isotropic and anisotropic random rough surfaces. The European Physical Journal B 15, 567–600 (2000)CrossRefGoogle Scholar
  3. 3.
    Cesar Jr., R.M., Jelinek, H.F.: Segmentation of retinal fundus vasculature in nonmydriatic camera images using wavelets. In: Suri, J.S., Laxminarayan, S. (eds.) Angiography and plaque imaging, pp. 193–224. CRC Press, London (2003)Google Scholar
  4. 4.
    Cree, M., Luckie, M., Jelinek, H.F., Cesar, R., Leandro, J., McQuellin, C., Mitchell, P.: Identification and follow-up of diabetic retinopathy in rural health in Australia: an automated screening model. In: AVRO, Fort Lauderdale, USA 5245/B5569 (2004)Google Scholar
  5. 5.
    da Costa, L.F.: On neural shape and function. In: Proceedings of the World Congress on Neuroinformatics: ARGESIM / ASIM- Verlag Vienna, pp. 397–411 (2001)Google Scholar
  6. 6.
    Dietterich, T.G., Bakiri, G.: Solving Multiclass Learning Problems Via Error-Correcting Output Codes. Journal of Artificial Intelligence Research 2, 263–286 (1995)MATHGoogle Scholar
  7. 7.
    Fukunaga, K.: Introduction to statistical pattern recognition, 2nd edn. Academic Press, Boston (1990)MATHGoogle Scholar
  8. 8.
    Gardner, G.G., Keating, D., Williamson, T.H., Elliot, A.T.: Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. British Journal of Ophthalmology 80, 940–944 (1996)CrossRefGoogle Scholar
  9. 9.
    Goupillaud, P., Grossmann, A., Morlet, J.: Cycle-octave and related transform in seismic signal analysis. Geoexploration 23, 85–102 (1984)CrossRefGoogle Scholar
  10. 10.
    Grossmann, A.: Wavelet Transforms and Edge Detection. In: Albeverio, S., et al. (eds.) Stochastic Processes in Physics and Engineering. Reidel Publishing Company, Dordrecht (1988)Google Scholar
  11. 11.
    Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating Blood Vessels in Retinal Images by Piecewise Threshold Probing of a Matched Filter Response. IEEE Transactions on Medical Imaging 19, 203–210 (2000)CrossRefGoogle Scholar
  12. 12.
    Jelinek, H.F., Cree, M.J., Worsley, D., Luckie, A., Nixon, P.: An Automated Microaneurysm Detector as a Tool for Identification of Diabetic Retinopathy in Rural Optometric Practice. Clinical and Experimental Optometry 89(5), 299–305 (2006)CrossRefGoogle Scholar
  13. 13.
    Leandro, J.J.G., Cesar Jr., R.M., Jelinek, H.F.: Blood vessels segmentation in retina: preliminary assessment of the mathematical morphology and of the wavelet transform techniques. In: Proceedings of SIBGRAPI 2001, Floriaopolis - SC, pp. 84–90. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  14. 14.
    Leandro, J.J.G., Soares, J.V.B., Cesar Jr., R.M., Jelinek, H.F.: Blood vessel segmentation of non-mydriatic images using wavelets and statistical classifiers. In: Proceedings of the Brazilian Conference on Computer Graphics, Image Processing and Vision (Sibgrapi 2003), Sao Paulo, Brazil, pp. 262–269. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  15. 15.
    McQuellin, C.P., Jelinek, H.F., Joss, G.: Characterisation of fluorescein angiograms of retinal fundus using mathematical morphology: a pilot study. In: Proceedings of the 5th International Conference on Ophthalmic Photography, Adelaide, p. 83 (2002)Google Scholar
  16. 16.
    Silink, M.: The diabetes epidemic: The case for a resolution on diabetes. Diabetic Endocrine Journal 34(suppl. 1), 3–4 (2006)Google Scholar
  17. 17.
    Sinthanayothin, C., Boyce, J., Williamson, C.T.: Automated localisation of the optic disc, fovea and retinal blood vessels from digital colour fundus images. British Journal of Ophthalmology 83(8), 902–912 (1999)CrossRefGoogle Scholar
  18. 18.
    Spencer, T., Olson, J.A., McHardy, K., Sharp, P.F., Forrester, J.V.: An Image-Processing Strategy for the Segmentation and Quantification of Microaneurysms in Fluorescein Angiograms of the Ocular Fundus. Comput. Biomed. Res. 29, 284–302 (1996)CrossRefGoogle Scholar
  19. 19.
    Staal, J.J., Abramoff, M.D., Niemeijer, M.A., Viergever, B., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging 23(4), 501–509 (2004)CrossRefGoogle Scholar
  20. 20.
    Theodoridis, S.: Pattern Recognition. Academic Press, Baltimore (1999)Google Scholar
  21. 21.
    Yogesan, K., Constable, I.J., Barry, C.J., Eikelboom, R.H., Tay-Kearney, M.L.: Telemedicine screening of diabetic retinopathy using a hand-held fundus camera. Telemedicine Journal 6(2), 219–223 (2000)CrossRefGoogle Scholar
  22. 22.
    Zana, F., Klein, J.C.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Transactions on Image Processing 10(7), 1010–1019 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • D. J. Cornforth
    • 1
  • H. F. Jelinek
    • 2
  • M. J. Cree
    • 3
  • J. J. G. Leandro
    • 4
  • J. V. B. Soares
    • 4
  • R. M. CesarJr.
    • 4
  1. 1.School of Information Technology and Electrical EngineeringUniversity of New South Wales, ADFACanberraAustralia
  2. 2.School of Community HealthCharles Sturt UniversityAlburyAustralia
  3. 3.Dept. EngineeringUniversity of WaikatoHamiltonNew Zealand
  4. 4.Computer ScienceUniversity of São PauloBrazil

Personalised recommendations