Advertisement

Automated Synchronous-to-Asynchronous Circuits Conversion: A Survey

  • Martin Simlastik
  • Viera Stopjakova
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5349)

Abstract

Automated synchronous-to-asynchronous circuit conversion can be considered as one area of clockless design style, which is becoming more and more interesting for synchronous designers with lack of knowledge and experience in the real asynchronous circuit design. Another reason why it is becoming so interesting is that the languages and design styles for specification of asynchronous circuits require a learning curve to understand, become proficient with them, and to use them effectively. Hence, numerous approaches for automated conversion of synchronous circuits into their asynchronous counterparts have been proposed in recent years. The main reason is the exploitation of the often claimed advantages of asynchronous circuits, especially their lower power consumption. This paper surveys some of the available well-known synchronous-to-asynchronous conversion techniques and tries to present both their positive and negative properties.

Keywords

Asynchronous Digital Circuits Self-time Digital Circuits Low Power Synchronous-to-asynchronous Conversion DLAP De-synchronization Phased Logic SADT LEDR Null Convention Logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kol, R., Ginosar, R.: A Doubly-Latched Asynchronous Pipeline. In: Proceedings of IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD 1997), Austin, TX, USA, 12-15 October 1997, pp. 706–711 (1997)Google Scholar
  2. 2.
    Kol, R., Ginosar, R., Samuel, G.: Statechart Methodology for the Design, Validation, and Synthesis of Large Scale Asynchronous Systems. In: Proceedings of the 2nd International Symposium on Advanced Research in Asynchronous Circuits and Systems 1996 (ASYNC 1996), Fukushima, Japan, 18-21 March 1996, pp. 164–174 (1996)Google Scholar
  3. 3.
    Perry, D.: VHDL, 2nd edn. McGraw-Hill, New York (1994)Google Scholar
  4. 4.
    Branover, A., Kol, R., Ginosar, R.: Asynchronous Design By Conversion: Converting Synchronous Circuits into Asynchronous Ones. In: Proceedings of Design, Automation and Test in Europe Conference and Exhibition 2004 (DATE 2004), 16-20 February 2004, vol. 2, pp. 870–875 (2004)Google Scholar
  5. 5.
    Cortadella, J., Kondratyev, A., Lavagno, L., Sotiriou, C.: A concurrent model for de-synchronization. In: Proceedings of International Workshop on Logic Synthesis, Laguna Beach, CA, pp. 294–301 (2003)Google Scholar
  6. 6.
    Cortadella, J., Kondratyev, A., Lavagno, L., Lwin, K., Sotiriou, C.: From synchronous to asynchronous: An automatic approach. In: Proceedings of DATE, Paris, France, vol. 2, pp. 1368–1369 (2004)Google Scholar
  7. 7.
    Blunno, I., Cortadella, J., Kondratyev, A., Lavagno, L., Lwin, K., Sotiriou, C.: Handshake protocols for de-synchronization. In: Proceedings of International Symposium on Advanced Research Asynchronous Circuits Systems, Crete, Greece, pp. 149–158 (2004)Google Scholar
  8. 8.
    Cortadella, J., Kondratyev, A., Lavagno, L., Sotiriou, C.: Desynchronization: Synthesis of Asynchronous Circuits from Synchronous Specifications. IEEE Transactions on CAD of Integrated Circuits and Systems 25(10), 1904–1921 (2006)CrossRefGoogle Scholar
  9. 9.
    Andrikos, N., Lavagno, L., Pandini, D., Sotiriou, C.P.: A Fully-Automated Desynchronization Flow for Synchronous Circuits. In: Proceedings of the 44th ACM/IEEE Design Automation Conference (DAC) 2007, San Diego, CA, USA, 4-8 June 2007, pp. 982–985 (2007)Google Scholar
  10. 10.
    Necchi, L., Lavagno, L., Pandini, D., Vanzago, L.: An ultralow energy asynchronous processor for Wireless Sensor Networks. In: Proceedings of the 12th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC 2006), p. 78 (March 2006)Google Scholar
  11. 11.
    Varshavsky, V., Marakhovsky, V., Chu, T.A.: Logical timing (global synchronization of asynchronous arrays). In: Proceedings of the 1st International Symposium on Parallel Algorithm/Architecture Synthesis, Aizu-Wakamatsu, Japan, pp. 130–138 (March 1995)Google Scholar
  12. 12.
    Benveniste, A., Caillaud, B., Guernic, P.L.: From synchrony to asynchrony. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 162–177. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Benveniste, A., Carloni, L., Caspi, P., Sangiovanni-Vincentelli, A.: Heterogeneous reactive systems modeling and correct-by-construction deployment. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 35–50. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Šimlaštík, M., et al.: Clockless Implementation of LEON2 for Low-Power Applications. In: Proceedings of the 10th IEEE Workshop DDECS 2007, Kraków, Poland, April 11-13 (2007)Google Scholar
  15. 15.
    Šimlaštík, M., et al.: De-synchronized LEON2 Integer Unit. In: Proceedings of the 6th Electronic Circuits and Systems Conference, Bratislava, Slovakia, September 6-7 (2007)Google Scholar
  16. 16.
  17. 17.
    Nanochronous Logic, http://www.nanochronous.com
  18. 18.
    Smirnov, A., Taubin, A.: Weaver Asynchronous (Self-Timed) Micropipeline Synthesis Flow, http://eda.bu.edu/weaver/about/
  19. 19.
    Sutherland, I.: Micropipelines. Communications of the ACM, 720–738 (June 1989)Google Scholar
  20. 20.
    Fant, K.M., Brandt, S.A.: Null Convention Logic, Theseus Research, Inc. (2002), http://www.theseusresearch.com/Downloads/NCL.PDF
  21. 21.
    Sobelman, G.E., Fant, K.M.: CMOS Circuit Design of Threshold Gates with Hysteresis. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 1998), Monterey, CA, USA, 31 May-3 June 1998, vol. 2, pp. 61–64 (1998)Google Scholar
  22. 22.
    Ligthart, M., Fant, K., Smith, R., Taubin, A., Kondratyev, A.: Asynchronous design using commercial hdl synthesis tools. In: Proceedings of International Symposium on Advanced Research Asynchronous Circuits Systems, Eilat, Israel, pp. 114–125 (April 2000)Google Scholar
  23. 23.
    Sparsø, J., Furber, S.: Principles of Asynchronous Circuit Design: A Systems Perspective. Kluwer Academic Publishers, Dordrecht (2001)CrossRefGoogle Scholar
  24. 24.
    ITRS: International Technology Roadmap for Semiconductors (1999), http://www.itrs.net/1999_SIA_Roadmap/Home.htm
  25. 25.
    Linder, D.: Phased Logic: A Design Methodology for Delay-Insensitive, Synchronous Circuitry. PhD thesis, Mississippi State University (1994)Google Scholar
  26. 26.
    Linder, D.H., Harden, J.C.: Phased logic: Supporting the synchronous design paradigm with delay-insensitive circuitry. IEEE Transactions on Computers 45(9), 1031–1044 (1996)CrossRefzbMATHGoogle Scholar
  27. 27.
    Dean, M., Williams, T., Dill, D.: Efficient Self-Timing, with Level-Encoded 2-Phase Dual-Rail (LEDR). In: Proceedings of the 1991 University of California/Santa Cruz conference on Advanced research in VLSI, pp. 55–70. MIT Press, Cambridge (1991)Google Scholar
  28. 28.
    McAuley, A.: Four State Asynchronous Architectures. IEEE Transactions on Computers 41(2), 129–142 (1992)CrossRefGoogle Scholar
  29. 29.
    Reese, R., Thornton, M., Traver, C., Hemmendinger, D.: Early Evaluation for Performance Enhancement in Phased Logic. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems 24(4), 532–550 (2005)CrossRefGoogle Scholar
  30. 30.
    Thornton, M., Fazel, K., Reese, R., Traver, C.: Genereralized Early Evaluation in Self-Timed Circuits. In: Proceedings of DATE 2002, Paris, France, pp. 255–259, March 4-8 (2002)Google Scholar
  31. 31.
    Reese, R., Thornton, M., Traver, C.: A Coarse-grained Phased Logic CPU. In: Proceedings of the 9th International Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC 2003), Vancouver, BC, Canada, pp. 2–13 (May 2003)Google Scholar
  32. 32.
    Reese, R., Thornton, M., Traver, C.: A Fine-grained Phased Logic CPU. In: IEEE Computer Society’s Annual Symposium on VLSI (ISVLSI 2003), Tampa, Florida, pp. 70–79 (February 2003)Google Scholar
  33. 33.
    Taubin, A., Cortadella, J., Lavagno, L., Kondratyev, A., Peeters, A.: Design automation of real-life asynchronous devices and systems. Foundations and Trends®in Electronic Design Automation 2(1), 1–133 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Martin Simlastik
    • 1
  • Viera Stopjakova
    • 1
  1. 1.Department of MicroelectronicsSlovak University of TechnologyBratislavaSlovakia

Personalised recommendations