Unambiguous Erasing Morphisms in Free Monoids

  • Johannes C. Schneider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5404)

Abstract

This paper discusses the fundamental combinatorial question of whether or not, for a given string α, there exists a morphism σ such that σ is unambiguous with respect to α, i. e. there exists no other morphism τ satisfying τ(α) = σ(α). While Freydenberger et al. (International Journal of Foundations of Computer Science 17, 2006) characterise those strings for which there exists an unambiguous non-erasing morphism σ, little is known about the unambiguity of erasing morphisms, i.e. morphisms which map symbols onto the empty string. The present paper demonstrates that, in contrast to the main result by Freydenberger et al., the existence of an unambiguous erasing morphisms for a given string can essentially depend on the size of the target alphabet of the morphism. In addition to this, those strings for which there exists an erasing morphism over an infinite target alphabet are characterised, complexity issues are discussed and some sufficient conditions for the (non-)existence of unambiguous erasing morphisms are given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Choffrut, C., Karhumäki, J.: Combinatorics of words. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, ch. 6, vol. 1, pp. 329–438. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Ehrenfeucht, A., Rozenberg, G.: Finding a homomorphism between two words is NP-complete. Information Processing Letters 9, 86–88 (1979)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Freydenberger, D.D., Reidenbach, D.: The unambiguity of segmented morphisms. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 181–192. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Freydenberger, D.D., Reidenbach, D., Schneider, J.C.: Unambiguous morphic images of strings. International Journal of Foundations of Computer Science 17, 601–628 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and Intractability – A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)MATHGoogle Scholar
  6. 6.
    Head, T.: Fixed languages and the adult languages of 0L schemes. International Journal of Computer Mathematics 10, 103–107 (1981)CrossRefMATHGoogle Scholar
  7. 7.
    Jiang, T., Salomaa, A., Salomaa, K., Yu, S.: Decision problems for patterns. Journal of Computer and System Sciences 50, 53–63 (1995)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Mateescu, A., Salomaa, A.: Patterns. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, ch. 4.2, vol. 1, pp. 230–242. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Reidenbach, D.: A non-learnable class of E-pattern languages. Theoretical Computer Science 350, 91–102 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Reidenbach, D.: Discontinuities in pattern inference. Theoretical Computer Science 397, 166–193 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Reidenbach, D., Schneider, J.C.: Morphically primitive words. In: Proc. 6th International Conference on Words, WORDS 2007, pp. 262–272 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Johannes C. Schneider
    • 1
  1. 1.Fachbereich InformatikTechnische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations