Advertisement

Abstract

For a fixed connected graph H, we consider the NP-complete H-packing problem, where, given an undirected graph G and an integer k ≥ 0, one has to decide whether there exist k vertex-disjoint copies of H in G. We give a problem kernel of O(k |V(H)| − 1) vertices, that is, we provide a polynomial-time algorithm that reduces a given instance of H-packing to an equivalent instance with at most O(k |V(H)| − 1) vertices. In particular, this result specialized to H being a triangle improves a problem kernel for Triangle Packing from O(k 3) vertices by Fellows et al. [WG 2004] to O(k 2) vertices.

Keywords

Vertex Cover Maximum Match Reduction Rule Problem Kernel Kernelization Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Khzam, F.N.: Kernelization algorithms for d-Hitting Set problems. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 434–445. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Bodlaender, H.L.: A cubic kernel for feedback vertex set. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 320–331. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization: Lower bounds and upper bounds on kernel size. SIAM J. Comput. 37(4), 1077–1106 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, J., Kanj, I.A., Jia, W.: Vertex cover: Further observations and further improvements. J. Algorithms 41(2), 280–301 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved algorithms for path, matching, and packing problems. In: Proc. 18th SODA, pp. 298–307. ACM/SIAM (2007)Google Scholar
  7. 7.
    Chlebík, M., Chlebíková, J.: Approximation hardness for small occurrence instances of NP-hard problems. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp. 152–164. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  9. 9.
    Fellows, M.R., Heggernes, P., Rosamond, F.A., Sloper, C., Telle, J.A.: Finding k disjoint triangles in an arbitrary graph. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 235–244. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Fellows, M.R., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F.A., Stege, U., Thilikos, D.M., Whitesides, S.: Faster fixed-parameter tractable algorithms for matching and packing problems. Algorithmica 52(2), 167–176 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fellows, M.R., Langston, M.A., Rosamond, F.A., Shaw, P.: Efficient parameterized preprocessing for Cluster Editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 312–321. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Fernau, H., Raible, D.: A parameterized perspective on packing paths of length two. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 54–63. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: Proc. 40th STOC, pp. 133–142. ACM Press, New York (2008)Google Scholar
  14. 14.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Exact algorithms for clique generation. Theory Comput. Syst. 38(4), 373–392 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Guo, J.: A more effective linear kernelization for Cluster Editing. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 36–47. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  17. 17.
    Hüffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-parameter algorithms. The Computer Journal 51(1), 7–25 (2008)CrossRefGoogle Scholar
  18. 18.
    Kirkpatrick, D.G., Hell, P.: On the completeness of a generalized matching problem. In: Proc. 10th STOC, pp. 240–245. ACM Press, New York (1978)Google Scholar
  19. 19.
    Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Divide-and-color. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 58–67. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Manic, G., Wakabayashi, Y.: Packing triangles in low degree graphs and indifference graphs. Discrete Math. 308(8), 1455–1471 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Nemhauser, G.L., Trotter, L.E.: Vertex packings: Structural properties and algorithms. Math. Program. 8, 232–248 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  24. 24.
    Prieto, E., Sloper, C.: Looking at the stars. Theor. Comput. Sci. 351(3), 437–445 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to parameterized cluster editing problems. Theory Comput. Syst. (2008)Google Scholar
  26. 26.
    Thomassé, S.: A quadratic kernel for feedback vertex set. In: Proc. 20th SODA, ACM/SIAM (to appear, 2009)Google Scholar
  27. 27.
    Wang, J., Feng, Q.: Improved parameterized algorithms for weighted 3-set packing. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 130–139. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Wang, J., Feng, Q.: An O *(3.523k) parameterized algorithm for 3-set packing. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 82–93. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Wang, J., Ning, D., Feng, Q., Chen, J.: An improved parameterized algorithm for a generalized matching problem. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 212–222. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hannes Moser
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations