Abstract

For a fixed connected graph H, we consider the NP-complete H-packing problem, where, given an undirected graph G and an integer k ≥ 0, one has to decide whether there exist k vertex-disjoint copies of H in G. We give a problem kernel of O(k |V(H)| − 1) vertices, that is, we provide a polynomial-time algorithm that reduces a given instance of H-packing to an equivalent instance with at most O(k |V(H)| − 1) vertices. In particular, this result specialized to H being a triangle improves a problem kernel for Triangle Packing from O(k 3) vertices by Fellows et al. [WG 2004] to O(k 2) vertices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Khzam, F.N.: Kernelization algorithms for d-Hitting Set problems. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 434–445. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Bodlaender, H.L.: A cubic kernel for feedback vertex set. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 320–331. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization: Lower bounds and upper bounds on kernel size. SIAM J. Comput. 37(4), 1077–1106 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chen, J., Kanj, I.A., Jia, W.: Vertex cover: Further observations and further improvements. J. Algorithms 41(2), 280–301 (2001)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved algorithms for path, matching, and packing problems. In: Proc. 18th SODA, pp. 298–307. ACM/SIAM (2007)Google Scholar
  7. 7.
    Chlebík, M., Chlebíková, J.: Approximation hardness for small occurrence instances of NP-hard problems. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp. 152–164. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  9. 9.
    Fellows, M.R., Heggernes, P., Rosamond, F.A., Sloper, C., Telle, J.A.: Finding k disjoint triangles in an arbitrary graph. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 235–244. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Fellows, M.R., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F.A., Stege, U., Thilikos, D.M., Whitesides, S.: Faster fixed-parameter tractable algorithms for matching and packing problems. Algorithmica 52(2), 167–176 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fellows, M.R., Langston, M.A., Rosamond, F.A., Shaw, P.: Efficient parameterized preprocessing for Cluster Editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 312–321. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Fernau, H., Raible, D.: A parameterized perspective on packing paths of length two. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 54–63. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: Proc. 40th STOC, pp. 133–142. ACM Press, New York (2008)Google Scholar
  14. 14.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Exact algorithms for clique generation. Theory Comput. Syst. 38(4), 373–392 (2005)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Guo, J.: A more effective linear kernelization for Cluster Editing. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 36–47. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  17. 17.
    Hüffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-parameter algorithms. The Computer Journal 51(1), 7–25 (2008)CrossRefGoogle Scholar
  18. 18.
    Kirkpatrick, D.G., Hell, P.: On the completeness of a generalized matching problem. In: Proc. 10th STOC, pp. 240–245. ACM Press, New York (1978)Google Scholar
  19. 19.
    Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Divide-and-color. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 58–67. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Manic, G., Wakabayashi, Y.: Packing triangles in low degree graphs and indifference graphs. Discrete Math. 308(8), 1455–1471 (2008)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Nemhauser, G.L., Trotter, L.E.: Vertex packings: Structural properties and algorithms. Math. Program. 8, 232–248 (1975)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefMATHGoogle Scholar
  24. 24.
    Prieto, E., Sloper, C.: Looking at the stars. Theor. Comput. Sci. 351(3), 437–445 (2006)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to parameterized cluster editing problems. Theory Comput. Syst. (2008)Google Scholar
  26. 26.
    Thomassé, S.: A quadratic kernel for feedback vertex set. In: Proc. 20th SODA, ACM/SIAM (to appear, 2009)Google Scholar
  27. 27.
    Wang, J., Feng, Q.: Improved parameterized algorithms for weighted 3-set packing. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 130–139. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Wang, J., Feng, Q.: An O *(3.523k) parameterized algorithm for 3-set packing. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 82–93. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Wang, J., Ning, D., Feng, Q., Chen, J.: An improved parameterized algorithm for a generalized matching problem. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 212–222. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hannes Moser
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations