On Finite Bases for Weak Semantics: Failures Versus Impossible Futures

  • Taolue Chen
  • Wan Fokkink
  • Rob van Glabbeek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5404)


We provide a finite basis for the (in)equational theory of the process algebra BCCS modulo the weak failures preorder and equivalence. We also give positive and negative results regarding the axiomatizability of BCCS modulo weak impossible futures semantics.


Normal Form Equational Theory Process Algebra Finite Basis Closed Substitution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aceto, L., Fokkink, W.J., van Glabbeek, R.J., Ingólfsdóttir, A.: Nested semantics over finite trees are equationally hard. Information and Computation 191(2), 203–232 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aceto, L., Fokkink, W.J., Ingólfsdóttir, A.: Ready to preorder: Get your BCCSP axiomatization for free! In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 65–79. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. Journal of the ACM 31(3), 560–599 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, T., Fokkink, W.J.: On the axiomatizability of impossible futures: Preorder versus equivalence. In: Proc. LICS 2008, pp. 156–165. IEEE, Los Alamitos (2008)Google Scholar
  5. 5.
    Chen, T., Fokkink, W.J., van Glabbeek, R.J.: On finite bases for weak semantics: Failures versus Impossible futures (2008),
  6. 6.
    Chen, T., Fokkink, W.J., van Glabbeek, R.J.: Ready to preorder: The case of weak process semantics. Information Processing Letters (to appear, 2008),
  7. 7.
    Chen, T., Fokkink, W.J., Luttik, B., Nain, S.: On finite alphabets and infinite bases. Information and Computation 206(5), 492–519 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Computer Science 34, 83–133 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fokkink, W.J., Nain, S.: A finite basis for failure semantics. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 755–765. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    de Frutos-Escrig, D., Gregorio-Rodriguez, C., Palomino, M.: Ready to preorder: an algebraic and general proof. Journal of Logic and Algebraic Programming (to appear, 2008),
  11. 11.
    van Glabbeek, R.J.: A complete axiomatization for branching bisimulation congruence of finite-state behaviours. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 473–484. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  12. 12.
    van Glabbeek, R.J.: The linear time – branching time spectrum II. The semantics of sequential systems with silent moves. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)Google Scholar
  13. 13.
    van Glabbeek, R.J.: Notes on the methodology of CCS and CSP. Theoretical Computer Science 177(2), 329–349 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    van Glabbeek, R.J.: The linear time – branching time spectrum I. The semantics of concrete, sequential processes. In: Handbook of Process Algebra, pp. 3–99. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  15. 15.
    van Glabbeek, R.J., Voorhoeve, M.: Liveness, fairness and impossible futures. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 126–141. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Groote, J.F.: A new strategy for proving ω-completeness with applications in process algebra. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 314–331. Springer, Heidelberg (1990)Google Scholar
  17. 17.
    Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)zbMATHGoogle Scholar
  18. 18.
    Milner, R.: A complete axiomatisation for observational congruence of finite-state behaviours. Information and Computation 81, 227–247 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rensink, A., Vogler, W.: Fair testing. Information and Computation 205(2), 125–198 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rounds, W.C., Brookes, S.D.: Possible futures, acceptances, refusals and communicating processes. In: Proc. FOCS 1981, pp. 140–149. IEEE, Los Alamitos (1981)Google Scholar
  21. 21.
    Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets. LNCS, vol. 625. Springer, Heidelberg (1992)zbMATHGoogle Scholar
  22. 22.
    Voorhoeve, M., Mauw, S.: Impossible futures and determinism. In: Information Processing Letters, pp. 51–58 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Taolue Chen
    • 1
  • Wan Fokkink
    • 1
    • 2
  • Rob van Glabbeek
    • 3
    • 4
  1. 1.CWI, Department of Software EngineeringAmsterdamThe Netherlands
  2. 2.Department of Theoretical Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
  3. 3.National ICT AustraliaSydneyAustralia
  4. 4.School of Computer Science and EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations