Epistemic Strategies and Games on Concurrent Processes

  • Konstantinos Chatzikokolakis
  • Sophia Knight
  • Prakash Panangaden
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5404)

Abstract

We develop a game semantics for process algebra with two interacting agents. The purpose of our semantics is to make manifest the role of knowledge and information flow in the interactions between agents and to control the information available to interacting agents. We define games and strategies on process algebras, so that two independent agents interacting according to their strategies determine the execution of the process, replacing the traditional scheduler. We show that different restrictions on strategies represent different amounts of information being available to a scheduler. We also show that a certain class of strategies corresponds to the syntactic schedulers of Chatzikokolakis and Palamidessi, which were developed to overcome problems with traditional schedulers modelling interaction. The restrictions on these strategies have an explicit epistemic flavour.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment. In: Proc. of Principles of Distributed Computing, pp. 50–61 (1984)Google Scholar
  2. 2.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995)MATHGoogle Scholar
  3. 3.
    Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Martella, G., Kurth, H., Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 198–218. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 171–185. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Chatzikokolakis, K., Palamidessi, C.: Making random choices invisible to the scheduler. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 42–58. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative linear logic. J. Symbolic Logic 59(2), 543–574 (1994)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF. Information and Computation 163, 285–408 (2000)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information and Computation 163, 409–470 (2000)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Danos, V., Harmer, R.: The anatomy of innocence. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 188–202. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Borgstrom, J., Kramer, S., Nestmann, U.: Calculus of cryptographic communication. In: Proceedings of FCS-ARSPA 2006, pp. 91–112 (2006)Google Scholar
  11. 11.
    Deschesne, F., Mousavi, M., Orzan, S.: Operational and epistemic approaches to protocol analysis: Bridging the gap. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790, pp. 226–241. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Shannon, C.: A mathematical theory of communication. Bell System Technical Journal 656, 379–423, 623–656 (1948)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as noisy channels. In: Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp. 281–300. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Krasucki, P., Ndjatou, G., Parikh, R.: Probabilistic knowledge and probabilistic common knowledge. In: ISMIS 1990, pp. 1–8. North-Holland, Amsterdam (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Konstantinos Chatzikokolakis
    • 1
  • Sophia Knight
    • 2
  • Prakash Panangaden
    • 2
  1. 1.Computing LaboratoryOxford University, U.K. and LIX, École PolytechniqueFrance
  2. 2.School of Computer ScienceMcGill UniversityMontréal, QuébecCanada

Personalised recommendations