Advertisement

A Definition of Cellular Interface Problems

  • Markus Kirkilionis
  • Mirela Domijan
  • Martin Eigel
  • Erwin George
  • Mike Li
  • Luca Sbano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5391)

Abstract

We define a class of cellular interface problems (short: CIP) that mathematically model the exchange of molecules in a compartmentalised living cell. Defining and eventually solving such compartmental problems is important for several reasons. They are needed to understand the organisation of life itself, for example by exploring different ’origin of life’ hypothesis based on simple metabolic pathways and their necessary division into one or more compartments. In more complex forms investigating cellular interface problems is a way to understand cellular homeostasis of different types, for example ionic fluxes and their composition between all different cellular compartments. Understanding homeostasis and its collapse is important for many physiological medical applications. This class of models is also necessary to formulate efficiently and in detail complex signalling processes taking place in different cell types, with eukaryotic cells the most complex ones in terms of sophisticated compartmentalisation. We will compare such mathematical models of signalling pathways with rule-based models as formulated in membrane computing in a final discussion. The latter is a theory that investigates computer programmes with the help of biological concepts, like a subroutine exchanging data with the environment, in this case a programme with its global variables.

Keywords

Markov Chain Interface Condition Membrane System Reaction Network Molecular Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguda, B.D., Clarke, B.L.: Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase reaction. J. Chem. Phys. 87, 3461–3470 (1987)CrossRefGoogle Scholar
  2. 2.
    Babuška, I., Banerjee, U., Osborn, J.E.: Meshless and generalized finite element methods: a survey of some major results. In: [26], p. 120. Springer, Berlin (2003)Google Scholar
  3. 3.
    Babuška, I., Melenk, J.M.: The partition of unity method. Internat. J. Numer. Methods Engrg. 40(4), 727–758 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Crysl, P.: Meshless methods: An overview and recent developments. Computational Methods in Applied Mechanical Engineering 139, 3–47 (1996)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bronnikova, T.V., Fed’kina, V.R., Schaffer, W.M., Olsen, L.F.: Period-doubling bifurcations in a detailed model of the peroxidase-oxidase reaction. J. Phys. Chem. 99, 9309–9312 (1995)CrossRefGoogle Scholar
  6. 6.
    Clarke, B.L.: Stability of complex reaction networks. In: Prigogine, I., Rice, S. (eds.) Advan. Chem. Phys., vol. 43, pp. 1–216. Wiley, New York (1980)CrossRefGoogle Scholar
  7. 7.
    Clarke, B.L., Jiang, W.: Method for deriving Hopf and saddle-node bifurcation hypersurfaces and application to a model of the Belousov-Zhabotinskii reaction. J. Chem. Phys. 99, 4464–4476 (1993)CrossRefGoogle Scholar
  8. 8.
    Cornish-Bowden, A., Hofmeyer, J.-H.S.: The role of stoichiometric analysis in studies of metabolism: an example. J. Theor. Biol. 216, 179–191 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Craciun, G., Tang, Y., Feinberg, M.: Understanding bistability in complex enzyme-driven reaction networks. PNAS 30(103), 8697–8702 (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Domijan, M., Kirkilionis, M.: Graph Theory and Qualitative Analysis of Reaction Networks. Networks and Heterogeneous Media 3, 95–322 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Domijan, M., Kirkilionis, M.: Bistability and Oscillations in Chemical Reaction Systems. Journal of Mathematical Biology (in press, 2008)Google Scholar
  12. 12.
    Eigel, M., George, E., Kirkilionis, M.: A Meshfree Partition of Unity Method for Diffusion Equations on Complex Domains. IMA Journal of Numerical Analysis (in press, 2008)Google Scholar
  13. 13.
    Eigel, M., Erwin, G., Kirkilionis, M.: The Partition of Unity Meshfree Method for Solving Transport-Reaction Equations on Complex Domains: Implementation and Applications in the Life Sciences. In: Griebel, M., Schweitzer, A. (eds.) Meshfree Methods for Partial Differential Equations IV. Lecture Notes in Computational Science and Engineering, vol. 65. Springer, Heidelberg (2009)Google Scholar
  14. 14.
    Eigel, M.: An adaptive mashfree method for reaction-diffusion processes on complex and nested domains. PhD thesis, University of Warwick (2008)Google Scholar
  15. 15.
    Field, R.J., Körös, E., Noyes, R.M.: Oscillations in chemical systems. 2. Thorough analysis of temporal oscillation in bromate-cerium-malonic acid system. J. Am. Chem. Soc. 94(25), 8649–8664 (1972)CrossRefGoogle Scholar
  16. 16.
    Ferry, J.G., House, C.H.: The Stepwise Evolution of Early life Driven by Energy Conservation. Molecular Biology and Evolution 23(6), 1286–1292 (2006)CrossRefGoogle Scholar
  17. 17.
    Field, R.J., Noyes, R.M.: Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 60, 1877–1884 (1974)CrossRefGoogle Scholar
  18. 18.
    Goldbeter, A., Dupont, G.: Allosteric regulation, cooperativity, and biochemical oscillations. Biophys. Chem. 37, 341–353 (1990)CrossRefGoogle Scholar
  19. 19.
    Guckenheimer, J., Holmes, J.P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Applied Mathematics Sciences, vol. 42. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  20. 20.
    Heinrich, R., Schuster, S.: The Regulation of Cellular Processes. Chapman & Hall, Boca Raton (1996)CrossRefzbMATHGoogle Scholar
  21. 21.
    Hunt, K.L.C., Hunt, P.M., Ross, J.: Nonlinear Dynamics and Thermodynamics of Chemical Reactions Far From Equilibrium. Annu. Rev. Phys. Chem. 41, 409–439 (1990)CrossRefGoogle Scholar
  22. 22.
    Ivanova, A.N.: Conditions for uniqueness of stationary state of kinetic systems, related, to structural scheme of reactions. Kinet. Katal. 20(4), 1019–1023 (1979)Google Scholar
  23. 23.
    Keener, J., Sneyd, J.: Mathematical Physiology. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  24. 24.
    Kirkilionis, M., et al. (eds.): Trends in Nonlinear Analysis. Springer, Heidelberg (2003)Google Scholar
  25. 25.
    Kirkilionis, M.: Reaction systems, graph theory and dynamical networks. In: Gauges, R., et al. (eds.) 5th Workshop on Computation of Biochemical Pathways and Genetic Networks, pp. 131–150. Logos-Verlag (2008)Google Scholar
  26. 26.
    Kirkilionis, M., Sbano, L.: An Averaging Principle for Combined Interaction Graphs. Part I: Connectivity and Applications to Genetic Switches. In: Advances in Complex Systems (2008); in revision. Also available as WMI Preprint 5/2008Google Scholar
  27. 27.
    Klonowski, W.: Simplifying principles for chemical and enzyme reaction kinetics. Biophys. Chem. 18, 73–87 (1983)CrossRefGoogle Scholar
  28. 28.
    Krischer, K., Eiswirth, M., Ertl, G.: Oscillatory CO oxidation on Pt(110): Modeling of temporal self-organisation. J. Chem. Phys. 96, 9161–9172 (1992)CrossRefGoogle Scholar
  29. 29.
    Kuznetsov, Y.: Elements of Applied Bifurcation Theory, 2nd edn. Applied Mathematical Sciences, p. 112. Springer, Heidelberg (1998)Google Scholar
  30. 30.
    Melenk, J.M., Babuška, I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Engrg. 139(1-4), 289–314 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Misteli, T., Gunjan, A., Hock, R., Bustink, M., David, T.: Dynamic binding of histone H1 to chromatin in living cells. Nature 408, 877–881 (2000)CrossRefGoogle Scholar
  32. 32.
    Paun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  33. 33.
    Ratto, G.M., Pizzorusso, T.: A kinase with a vision: Role of ERK in the synaptic plasticity of the visual cortex. Adv. Exp. Med. Biol. 557, 122–132 (2006)CrossRefGoogle Scholar
  34. 34.
    Pavliotis, G.A., Stuart, A.M.: An Introduction to Multiscale Methods. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  35. 35.
    Perelson, A.S., Wallwork, D.: The arbitrary dynamic behavior of open chemical reaction systems. J. Chem. Phys. 66, 4390–4394 (1977)CrossRefGoogle Scholar
  36. 36.
    Sbano, L., Kirkilionis, M.: Molecular Reactions Described as Infinite and Finite State Systems. Part I: Continuum Approximation. Warwick Preprint 05/2007Google Scholar
  37. 37.
    Sbano, L., Kirkilionis, M.: Molecular Reactions Described as Infinite and Finite State Systems Part Ii: Deterministic Dynamics and Examples. Warwick Preprint 07/2007Google Scholar
  38. 38.
    Sbano, L., Kirkilionis, M.: Multiscale Analysis of Reaction Networks. Theory in Biosciences 127, 107–123 (2008)CrossRefGoogle Scholar
  39. 39.
    Schweitzer, M.A.: Efficient implementation and parallelization of meshfree and particle methods—the parallel multilevel partition of unity method, pp. 195–262. Springer, Berlin (2005)zbMATHGoogle Scholar
  40. 40.
    Siegel, I.H.: Enzyme Kinetics. Wiley, Chichester (1975)Google Scholar
  41. 41.
    Selkov, E.E.: Self-oscillations in glycolysis. 1. A simple kinetic model. Eur. J. Biochem. 4, 79–86 (1968)CrossRefGoogle Scholar
  42. 42.
    Slepchenko, B.M., Terasaki, M.: Cyclin aggregation and robustness of bio-switching. Mol. Biol. Cell. 14, 4695–4706 (2003)CrossRefGoogle Scholar
  43. 43.
    Tyson, J.J., Chen, K., Novak, B.: Network dynamics and cell physiology. Nat. Rev. Mol. Cell Biol. 2, 908–916 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Markus Kirkilionis
    • 1
  • Mirela Domijan
    • 1
  • Martin Eigel
    • 1
  • Erwin George
    • 1
  • Mike Li
    • 1
  • Luca Sbano
    • 1
  1. 1.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations