MetaPlab: A Computational Framework for Metabolic P Systems

  • Alberto Castellini
  • Vincenzo Manca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5391)

Abstract

In this work the formalism of metabolic P systems is employed as a basis of a new computational framework for modeling biological networks. The proposed software is a virtual laboratory, called MetaPlab, which supports the synthesis of metabolic P systems by means of an extensible plugin-based architecture. The Java implementation of the software is outlined and a specific plugin at work is described to highlight the internal functioning of the whole architecture.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernardini, F., Gheorghe, M., Krasnogor, N.: Quorum sensing P systems. Theoretical Computer Sci. 371, 20–33 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bernardini, F., Manca, V.: Dynamical aspects of P systems. BioSystems 70, 85–93 (2003)CrossRefMATHGoogle Scholar
  3. 3.
    Bianco, L., Castellini, A.: Psim: a computational platform for metabolic P systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 1–20. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bianco, L., Fontana, F., Franco, G., Manca, V.: P systems for biological dynamics. In: Ciobanu, G., et al. (eds.) Applications of Membrane Computing, pp. 81–126. Springer, Heidelberg (2006)Google Scholar
  5. 5.
    Bianco, L., Fontana, F., Manca, V.: P systems with reaction maps. Intern. J. Foundations of Computer Sci. 17, 27–48 (2006)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bianco, L., Pescini, D., Siepmann, P., Krasnogor, N., Romero-Campero, F.J., Gheorghe, M.: Towards a P systems Pseudomonas quorum sensing model. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 197–214. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)MATHGoogle Scholar
  8. 8.
    Castellini, A., Franco, G., Manca, V.: Hybrid functional Petri nets as MP systems (submitted, 2008)Google Scholar
  9. 9.
    Castellini, A., Franco, G., Manca, V.: Toward a representation of hybrid functional Petri nets by MP systems. In: Proc. 2nd Intern. Workshop on Natural Computing, IWNC, Nagoya University, Japan (2007)Google Scholar
  10. 10.
    Fontana, F., Manca, V.: Discrete solutions to differential equations by metabolic P systems. Theoretical Computer Sci. 372, 165–182 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Goldbeter, A.: A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. PNAS 88, 9107–9111 (1991)CrossRefGoogle Scholar
  12. 12.
    Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: COPASI a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074 (2006)CrossRefGoogle Scholar
  13. 13.
    Kitano, H.: Computational systems biology. Nature 420, 206–210 (2002)CrossRefGoogle Scholar
  14. 14.
    Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence (Genetic Programming). Springer, Heidelberg (2003)MATHGoogle Scholar
  15. 15.
    Manca, V.: Metabolic P systems for biochemical dynamics. Progress in Natural Sciences 17, 384–391 (2007)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Manca, V.: Discrete simulations of biochemical dynamics. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 231–235. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Manca, V.: Log-gain principles for metabolic P systems (submitted, 2008)Google Scholar
  18. 18.
    Manca, V.: The metabolic algorithm. Principles and applications. Theoretical Computer Sci. 404, 142–157 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Manca, V., Bianco, L.: Biological networks in metabolic P systems. BioSystems 91, 489–498 (2008)CrossRefGoogle Scholar
  20. 20.
    Manca, V., Bianco, L., Fontana, F.: Evolutions and oscillations of P systems: Applications to biochemical phenomena. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 63–84. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Manca, V., Pagliarini, R., Zorzan, S.: Toward an MP model of non photochemical quenching. In: Pre-Proc. 9-th Workshop on Membrane Computing, Edinburgh, UK (2008)Google Scholar
  22. 22.
    Nagasaki, M., Doi, A., Matsuno, H., Miyano, S.: Genomic object net: I. A platform for modelling and simulating biopathways. Applied Bioinformatics 2, 181–184 (2004)Google Scholar
  23. 23.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61, 108–143 (2000)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar
  25. 25.
    Romero-Campero, F.J., Cao, H., Camera, M., Krasnogor, N.: Structure and parameter estimation for cell systems biology models. In: Proc. Genetic and Evolutionary Computation Conference, GECCO 2008. ACM Publisher, New York (2008)Google Scholar
  26. 26.
    Voit, E., Neves, A.R., Santos, H.: The intricate side of systems biology. PNAS 103, 9452–9457 (2006)CrossRefGoogle Scholar
  27. 27.
    von Bertalanffy, L.: General Systems Theory: Foundations, Developments, Applications. George Braziller Inc. (1967)Google Scholar
  28. 28.
    Center for BioMedival Computing web site, http://wwwcbmc.it
  29. 29.
    MetaPlab website, http://mplab.sci.univr.it

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alberto Castellini
    • 1
  • Vincenzo Manca
    • 1
  1. 1.Computer Science DepartmentVerona UniversityVeronaItaly

Personalised recommendations