On the Maximum Edge Coloring Problem

(Extended Abstract)
  • Giorgio Lucarelli
  • Ioannis Milis
  • Vangelis Th. Paschos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5426)


We study the following generalization of the classical edge coloring problem: Given a weighted graph, find a partition of its edges into matchings (colors), each one of weight equal to the maximum weight of its edges, so that the total weight of the partition is minimized. We present new approximation algorithms for several variants of the problem with respect to the class of the underlying graph. In particular, we deal with variants which either are known to be NP-hard (general and bipartite graphs) or are proven to be NP-hard in this paper (complete graphs with bi-valued edge weights) or their complexity question still remains open (trees).


Bipartite Graph Complete Graph Approximation Ratio Edge Weight General Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afrati, F.N., Aslanidis, T., Bampis, E., Milis, I.: Scheduling in switching networks with set-up delays. Journal of Combinatorial Optimization 9, 49–57 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Brucker, P., Gladky, A., Hoogeveen, H., Koyalyov, M., Potts, C., Tautenham, T., van de Velde, S.: Scheduling a batching machine. Journal of Scheduling 1, 31–54 (1998)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chetwynd, A.G., Hilton, A.J.W.: Regular graphs of high degree are 1-factorizable. In: Proceedings of the London Mathematical Society, vol. 50, pp. 193–206 (1985)Google Scholar
  4. 4.
    Crescenzi, P., Deng, X., Papadimitriou, C.H.: On approximating a scheduling problem. Journal of Combinatorial Optimization 5, 287–297 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    de Werra, D., Demange, M., Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring on planar, bipartite and split graphs: Complexity and improved approximation. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 896–907. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    de Werra, D., Hoffman, A.J., Mahadev, N.V.R., Peled, U.N.: Restrictions and preassignments in preemptive open shop scheduling. Discrete Applied Mathematics 68, 169–188 (1996)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Demange, M., de Werra, D., Monnot, J., Paschos, V.T.: Weighted node coloring: When stable sets are expensive. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 114–125. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring: further complexity and approximability results. Information Processing Letters 97, 98–103 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Finke, G., Jost, V., Queyranne, M., Sebő, A.: Batch processing with interval graph compatibilities between tasks. Technical report, Cahiers du laboratoire Leibniz (2004), http://www-leibniz.imag.fr/NEWLEIBNIZ/LesCahiers/index.xhtml
  10. 10.
    Fiorini, S., Wilson, R.J.: Edge-Colourings of Graphs. Pitman, London (1977)MATHGoogle Scholar
  11. 11.
    Gopal, I.S., Wong, C.: Minimizing the number of switchings in a SS/TDMA system. IEEE Transactions On Communications 33, 497–501 (1985)CrossRefGoogle Scholar
  12. 12.
    Holyer, I.: The NP-completeness of edge-coloring. SIAM Journal on Computing 10, 718–720 (1981)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kesselman, A., Kogan, K.: Nonpreemptive scheduling of optical switches. IEEE Transactions on Communications 55, 1212–1219 (2007)CrossRefGoogle Scholar
  14. 14.
    König, D.: Über graphen und ihre anwendung auf determinantentheorie und mengenlehre. Mathematische Annalen 77, 453–465 (1916)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kubale, M.: Some results concerning the complexity of restricted colorings of graphs. Discrete Applied Mathematics 36, 35–46 (1992)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lucarelli, G., Milis, I., Paschos, V.T.: On a generalized graph coloring/batch scheduling problem. In: 3rd Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA), pp. 353–360 (2007)Google Scholar
  17. 17.
    Micali, S., Vazirani, V.V.: An \({O(\sqrt{|V|}|E|)}\) algorithm for finding maximum matching in general graphs. In: 21st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 17–27 (1980)Google Scholar
  18. 18.
    Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring problem. In: 32nd International Colloquium on Automata, Languages and Programming (ICALP), pp. 1064–1075 (2005)Google Scholar
  19. 19.
    Pemmaraju, S.V., Raman, R., Varadarajan, K.R.: Buffer minimization using max-coloring. In: 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 562–571 (2004)Google Scholar
  20. 20.
    Rendl, F.: On the complexity of decomposing matrices arising in satellite communication. Operations Research Letters 4, 5–8 (1985)CrossRefMATHGoogle Scholar
  21. 21.
    Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskret. Analiz. 3, 25–30 (1964)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Giorgio Lucarelli
    • 1
  • Ioannis Milis
    • 1
  • Vangelis Th. Paschos
    • 2
  1. 1.Dept. of InformaticsAthens University of Economics and BusinessGreece
  2. 2.LAMSADE, CNRS UMR 7024 and Université Paris-DauphineFrance

Personalised recommendations