Smoothing Imprecise 1.5D Terrains

  • Chris Gray
  • Maarten Löffler
  • Rodrigo I. Silveira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5426)


We study optimization problems in an imprecision model for polyhedral terrains. An imprecise terrain is given by a triangulated point set where the height component of the vertices is specified by an interval of possible values. We restrict ourselves to 1.5-dimensional terrains: an imprecise terrain is given by an x-monotone polyline, and the y-coordinate of each vertex is not fixed but constrained to a given interval. Motivated by applications in terrain analysis, in this paper we present two linear-time approximation algorithms, for minimizing the largest turning angle and for maximizing the smallest one. In addition, we also provide linear time exact algorithms for minimizing and maximizing the sum of the turning angles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Moshe, B., Katz, M.J., Mitchell, J.S.B.: A constant-factor approximation algorithm for optimal 1.5d terrain guarding. SIAM Journal on Computing 36(6), 1631–1647 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Dyn, N., Levin, D., Rippa, S.: Data dependent triangulations for piecewise linear interpolation. IMA Journal of Numerical Analysis 10, 137–154 (1990)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Feciskanin, R.: Optimization of triangular irregular networks for modeling of geometrical structure of georelief. In: Proc. International Cartographic Conference 2007 (2007)Google Scholar
  4. 4.
    de Floriani, L., Magillo, P., Puppo, E.: Applications of computational geometry in Geographic Information Systems. In: Sack, J., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 333–388. Elsevier, Amsterdam (1997)Google Scholar
  5. 5.
    Gray, C., Evans, W.: Optimistic shortest paths on uncertain terrains. In: Proc. 16th Canadian Conf. Comput. Geom., pp. 68–71 (2004)Google Scholar
  6. 6.
    Gray, C., Löffler, M., Silveira, R.I.: Smoothing imprecise 1.5D terrains. Tech. Rep. UU-CS-2008-036, Department of Information and Computing Sciences, Utrecht University (2008)Google Scholar
  7. 7.
    Hofer, M., Sapiro, G., Wallner, J.: Fair polyline networks for constrained smoothing of digital terrain elevation data. IEEE Trans. Geosc. Remote Sensing 44, 2983–2990 (2006)CrossRefGoogle Scholar
  8. 8.
    Kholondyrev, Y., Evans, W.: Optimistic and pessimistic shortest paths on uncertain terrains. In: Proc. 19th Canadian Conf. Comput. Geom., pp. 197–200 (2007)Google Scholar
  9. 9.
    King, J.: A 4-approximation algorithm for guarding 1.5-dimensional terrains. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 629–640. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Moet, E., van Kreveld, M., van der Stappen, A.F.: On realistic terrains. In: Proc. 22nd Annu. ACM Sympos. Comput. Geom., pp. 177–186 (2006)Google Scholar
  11. 11.
    Silveira, R.I., van Oostrum, R.: Flooding countries and destroying dams. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 227–238. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Tasdizen, T., Whitaker, R.T.: Feature preserving variational smoothing of terrain data. In: Proc. 2nd International IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision (2003)Google Scholar
  13. 13.
    Wang, K., Lo, C.P., Brook, G.A., Arabnia, H.R.: Comparison of existing triangulation methods for regularly and irregularly spaced height fields. International Journal of Geographical Information Science 15(8), 743–762 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Chris Gray
    • 1
  • Maarten Löffler
    • 2
  • Rodrigo I. Silveira
    • 2
  1. 1.Department of Computer ScienceTU BraunschweigGermany
  2. 2.Dept. Computer ScienceUtrecht UniversityThe Netherlands

Personalised recommendations