Medizintechnik pp 1519-1584 | Cite as

Grundlagen der Nieren- und Leberdialyse

  • Christian Schreiber
  • Ahmed N. AR. Al-Chalabi
  • Oana Tanase
  • Bernhard Kreymann

Zusammenfassung

Die Dialyse ist ein künstliches Blutreinigungsverfahren, das sowohl mit der Nachahmung physiologischer Vorgänge als auch mit der Benutzung bestimmter physikalisch- chemischer Gesetze arbeitet. Ihre technische Umsetzung in einer Dialysemaschine sowie chirurgische und internistische Interventionen gehören zu dem Zusammenspiel unterschiedlicher Disziplinen, die eine Dialyse ermöglichen. Die Grundlagen des Dialyseverfahrens, die Maschine und die Unterschiede von Nieren- und Leberdialyse sollen im Folgenden erklärt werden. Heute besteht in der Bundesrepublik Deutschland bei ca. 55.000 Patienten ein chronisch dialysepflichtiges Nierenversagen (Stand 2005). Das Leben dieser Patienten kann mit der Dialyse um Jahrzehnte verlängert werden. Damit ist die Nierendialyse eines der erfolgreichsten medizintechnischen Verfahren. Bei der Leberdialyse sind ebenbürtige Erfolge noch nicht erzielt worden. Umso wichtiger ist es, hier neue Wege zu finden, um auch für Leberpatienten ein effizientes Dialyseverfahren zu etablieren.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Cooney, D.O., Biomedical engineering principles: an introduction to fluid, heat, and mass transport processes. 2, Dekker, New York [u. a.], 1976, S. 458Google Scholar
  2. 2.
    (DSO), Bundesweiter Jahresbericht der Deutschen Stiftung Organtransplantation www.dso.de, 2006, Google Scholar
  3. 3.
    Kolff, W.J., The invention of the artificial kidney. Int J Artif Organs, 13 (6), 1990, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list _uids=2199377 S. 337–43 Google Scholar
  4. 4.
    Feely, T., Copley, A., Bleyer, A.J., Catheter lock solutions to prevent bloodstream infections in high-risk hemodialysis patients. Am J Nephrol, 27 (1), 2007, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17215571 S. 24–9CrossRefGoogle Scholar
  5. 5.
    Stegmayr, B.G., A survey of blood purification techniques. Transfus Apher Sci, 32 (2), 2005, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15784456 S. 209–20 CrossRefGoogle Scholar
  6. 6.
    Hughes, R.D., Pucknell, A., Routley, D., et al., Evaluation of the BioLogic-DT sorbent-suspension dialyser in patients with fulminant hepatic failure. Int J Artif Organs, 17 (12), 1994, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7759146 S. 657–62 Google Scholar
  7. 7.
    Fischer, K.G., Essentials of anticoagulation in hemodialysis. Hemodial Int, 11 (2), 2007, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17403168 S. 178–89 CrossRefGoogle Scholar
  8. 8.
    Oo, T.N., Smith, C.L., Swan, S.K., Does uremia protect against the demyelination associated with correction of hyponatremia during hemodialysis? A case report and literature review. Semin Dial, 16 (1), 2003, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12535304 S. 68–71 CrossRefGoogle Scholar
  9. 9.
    Pedrini, L.A., On-line hemodiafiltration: technique and efficiency. J Nephrol, 16 Suppl 7, 2003, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14733302 S. S57–63 Google Scholar
  10. 10.
    Deutsche Arbeitsgemeinschaft für Klinische Nephrologie e.V., Band XXXV/2006, Vandenhoeck & Ruprecht, Göttingen, 2006 Google Scholar
  11. 11.
    Busse, C., Blutreinigungssysteme. In: Medizintechnik – Verfahren, Systeme, Informationsverarbeitung, Kramme R. (Hrsg.), Springer Berlin, 2007, S. 443–458 Google Scholar
  12. 12.
    Hoenich, N., Thompson, J., Varini, E., et al., Particle spallation and plasticizer (DEHP) release from extracorporeal circuit tubing materials. International Journal for Artificial Organs, 13, 1990, S. 55–62 Google Scholar
  13. 13.
    Ljunggren, L., Plasticizer migration from blood lines in hemodialysis. Artificial Organs, 8, 1984, S. 99–102 CrossRefGoogle Scholar
  14. 14.
    Flaminio, L.M., De Angelis, L., Ferazza, M., et al., Leachability of a new plasticizer tri-(2-ethylhexyl)-trimellitate from haemodialysis tubing. International Journal for Artificial Organs, 11, 1988, S. 435–439 Google Scholar
  15. 15.
    Hildenbrand, S.L., Lehmann, H.D., Wodarz, R., et al., PVC-plasticizer DEHP in medical products: Do thin coatings really reduce DEHP leaching into blood? Perfusion, 20, 2005, S. 351–357 CrossRefGoogle Scholar
  16. 16.
    Balakrishnan, B., Kumar, D.S., Yoshida, Y., et al., Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility. Biomaterials, 26, 2005, S. 3495–3502 CrossRefGoogle Scholar
  17. 17.
    Hoenich, N., The extracorporeal circuit: Materials, problems, and solutions. Hemodialysis INternational, 11, 2007, S. 26–31 CrossRefGoogle Scholar
  18. 18.
    Meyer, G., Hämodialyse: Technik und Anwendung; ein Kompendium für Ärzte, Pflegepersonal und Techniker. 1. Auflage ed, Pabst, Berline, 1994 Google Scholar
  19. 19.
    Ricci, Z., Salvatori, G., Bonello, M., et al., A new machine for continuous renal replacement therapy: from development to clinical testing. Expert Rev.Med.Devices, 2 (1), 2005, S. 47–55CrossRefGoogle Scholar
  20. 20.
    Roberts, M., Winney, R.J., Errors in fluid balance with pump control of continuous hemodialysis. The International Journal of Artificial Organs, 15 (2), 1992, S. 99–102 Google Scholar
  21. 21.
    Depner, T.A., Rizwan, S., Stasi, T.A., Pressure effects on roller pump blood flow during hemodialysis. ASAIO Trans, 36 (3), 1990, S. M456–9 Google Scholar
  22. 22.
    Sands, J., Glidden, D., Jacavage, W., et al., Difference between delivered and prescribed blood flow in hemodialysis. ASAIO Journal, 42 (5), 1996, http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-0030250793&partnerID=40&rel=R5.6.0 Google Scholar
  23. 23.
    Polaschegg, H.D., Levin, N.W., Hemodialysis machines and monitors. In: Replacement of Renal Funcion by Dialysis, Winchester J.F.H., W.H.; Koch, K.M.; Lindsay, R.M.; Ronco, C (Hrsg.), Kluwer Academic Publishers, Dordrecht, 2004, S. 325–449 Google Scholar
  24. 24.
    Breuch, G., Fachpflege Nephrologie und Dialyse, 3. Auflage, Urban & Fischer Verlag, München, 2003 Google Scholar
  25. 25.
    Misra, M., The basics of hemodialysis equipment. Hemodialysis INternational, (9), 2005, S. 30–36 Google Scholar
  26. 26.
    Polaschegg, H.D., Machines for hemodialysis. Contrib Nephrol, 149, 2005, S. 18–26 CrossRefGoogle Scholar
  27. 27.
    EC 60601-2-16:1998. Medical electrical equipment. Part 2:Particular requirements for safety of haemodialysis equipment, 1998 Google Scholar
  28. 28.
    ANSI/AAMI, American National Standard. Hemodialysis Systems, 2007 Google Scholar
  29. 29.
    Curtis, J., Delaney, K., O´Kane, P., et al., Hemodialysis devices. In: Core Curriculum for the Dialysis Technician: A Comprehensive Review of Hemodialysis, (Hrsg.), Medical Education Institute, Inc., Medison, WI, 2006, S. 89–117 Google Scholar
  30. 30.
    Daugirdas, J.T., Van Stone, J.C., Boag, J.T., Hemodialysis apparatus. In: Handbook of Dialysis, Daugirdas J.T.B., P.G.; Ing, T.S. (Hrsg.), Lippincott Williams & Wilkins, Philadelphia, PA, 2001, S. 48 Google Scholar
  31. 31.
    Kramer, P., Wigger, W., Matthaei, D., et al., Clinical experience with continuously monitored fluid balance in automatic hemofiltration. Artif Organs, 2 (2), 1978, S. 147–9 CrossRefGoogle Scholar
  32. 32.
    Streicher, E., Vorrichtung zur Substitution identischer Volumina bei Dialyse und Blutdiafiltration. Berghof GmbH, Deutschland, 1978 Google Scholar
  33. 33.
    Beden, J., Flaig, J.J., Polaschegg, J.D., et al., Volumetric fluid balancing for hemo- and plasmafiltration. 2nd European Conference on Engineering and MEdicine, Stuttgart, 25–29 April, 1993 Google Scholar
  34. 34.
    Gambro, Centrosystem 3 Dialysis Control Unit, Maintenance and Troubleshooting Service Manual, Gambro, Inc., Lakewood, CO, 1991–2001 Google Scholar
  35. 35.
    Locatelli, F., Buoncristiani, U., Canaud, B., et al., Haemodialysis with on-line monitoring equipment: tools or toys? Nephrology Dialysis Transplantation, 20, 2005, S. 22–33 CrossRefGoogle Scholar
  36. 36.
    Locatelli, F., Di Filippo, S., Manzoni, C., et al., Monitoring soidum removal and delivered dialysis by conductivity. International Journal for Artificial Organs, 18, 1995, S. 716–721 Google Scholar
  37. 37.
    Johner, C., Chamney, P.W., Schneditz, D., et al., Evaluation of an ultrasonic blood volume monitor. Nephrology Dialysis Transplantation, 13, 1998, S. 2098–2103 CrossRefGoogle Scholar
  38. 38.
    Andrulli, S., Colzani, S., Mascia, F.e.a., The role of blood volume reduction in the genesis of intradialytic hypotension. American Journal for Kidney Dialysis, 40, 2002, S. 1244–1254 CrossRefGoogle Scholar
  39. 39.
    Basile, C.G., R.; Vernaglione, L. et al, Efficacy and safety of haemodialysis treatment with the Hemocontrol biofeedback system: a prospective medium-term study. Nephrology Dialysis Transplantation, 16, 2001, S. 328–334 CrossRefGoogle Scholar
  40. 40.
    Ronco, C., Brendolan, A., Milan, M., et al., Impact of biofeedback-induced cardiovascular stability on hemodialysis tolerance and efficiency. Kidney International, 58, 2000, S. 800–808CrossRefGoogle Scholar
  41. 41.
    Santoro, A., Mancini, E., Basile, C., et al., Blood volume controlled hemodialysis in hypotension-prone patients: a randomized, multicenter controlled trial. Kidney International, 62, 2002, S. 1034–1045 CrossRefGoogle Scholar
  42. 42.
    Krämer, M., Wiederherstellung von Nierenfunktionen. In: Kooperative und autonome Systeme in der Medizintechnik, Werner J. (Hrsg.), Oldenbourg Verlag, München, 2005, S. 277–348 Google Scholar
  43. 43.
    Kapoor, D., Molecular adsorbent recirculating system: Albumin dialysis-based extracorporeal liver assist device. Journal of Gastroenterology and Hepatology, 17 (3), 2002, S. 280–286 CrossRefGoogle Scholar
  44. 44.
    Tersteegen, B., Endert, G., Verfahren zur Herstellung von Dialysierflüssigkeit zur Verwendung in Haemodialysegeräten sowie Vorrichtung zur Durchfuehrung des Verfahrens. Tersteegen, B., Deutschland, 1983Google Scholar
  45. 45.
    Fassbinder, W., Experience with the GENIUS® Hemodialysis System. Kidney & Blood Pressure Research, 26, 2003, S. 96–99CrossRefGoogle Scholar
  46. 46.
    Dhondt, A., Eloot, S., Wachter, D.D., et al., Dialysate partitioning in the Genius batch hemodialysis system: effect of temperature and solute concentration. Kidney Int, 67 (6), 2005, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15882294 S. 2470–6CrossRefGoogle Scholar
  47. 47.
    Eloot, S., Dhondt, A., Vierendeels, J., et al., Temperature and concentration distribution within the Genius(R) dialysate container. Nephrol Dial Transplant, 2007, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17567650 Google Scholar
  48. 48.
    Kielstein, J.T., Linnenweber, S., Schoepke, T., et al., One for all – a multi-use dialysis system for effective treatment of severe thallium intoxication. Kidney Blood Press Res, 27 (3), 2004, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15256818 S. 197–9CrossRefGoogle Scholar
  49. 49.
    Kleophas, W., Backus, G., A simplified method for adequate hemodialysis. Blood Purif, 19 (2), 2001, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11150808 S. 189–94CrossRefGoogle Scholar
  50. 50.
    Lonnemann, G., Floege, J., Kliem, V., et al., Extended daily veno-venous high-flux haemodialysis in patients with acute renal failure and multiple organ dysfunction syndrome using a single path batch dialysis system. Nephrol Dial Transplant, 15 (8), 2000, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10910443 S. 1189–93CrossRefGoogle Scholar
  51. 51.
    Fliser, D., Kielstein, J.T., A single-pass batch dialysis system: an ideal dialysis method for the patient in intensive care with acute renal failure. Curr Opin Crit Care, 10 (6), 2004, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15616390 S. 483–8 CrossRefGoogle Scholar
  52. 52.
    Kielstein, J.T., Hafer, C., „Extended dialysis“ auf der Intensivstation. Der Nephrologe – Zeitschrift für Nephrologie und Hypertensiologie, 1 (2), 2006, S. 97–102 Google Scholar
  53. 53.
    Kiley, J., Welch, H.F., Pender, J.C., Removal of blood ammonia by haemodialysis. Proc. Soc. Exp. Biol. Medical, 91, 1956, S. 489–90Google Scholar
  54. 54.
    Kramer, L., Indikationen und KOmplikationen der Plasmapherese im Rahmen der Intensivmedizin. Intensivmedizin + Notfallmedizin, 35 (5), 1998, S. 349–355 CrossRefGoogle Scholar
  55. 55.
    Tan, H.K., Hart, G., Plasma filtration. Ann Acad Med Singapore, 34 (10), 2005, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16382247 S. 615–24Google Scholar
  56. 56.
    Clemmesen, J.O., Kondrup, J., Nielsen, L.B., et al., Effects of high-volume plasmapheresis on ammonia, urea, and amino acids in patients with acute liver failure. Am J Gastroenterol, 96 (4), 2001, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11316173 S. 1217–23 CrossRefGoogle Scholar
  57. 57.
    Kondrup, J., Almdal, T., Vilstrup, H., et al., High volume plasma exchange in fulminant hepatic failure. Int J Artif Organs, 15 (11), 1992, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1490760 S. 669–76 Google Scholar
  58. 58.
    Sadamori, H., Yagi, T., Inagaki, M., et al., High-flow-rate haemodiafiltration as a brain-support therapy proceeding to liver transplantation for hyperacute fulminant hepatic failure. Eur J Gastroenterol Hepatol, 14 (4), 2002, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11943960 S. 435–9 CrossRefGoogle Scholar
  59. 59.
    Seige, M., Kreymann, B., Jeschke, B., Schweigart, U., Kopp, K., Classen, M.,, Long-term treatment of patients with acute exacuberation of chronic liver failure by albumin dialysis. Transplantation Proceedings, 31 (1–2), 1999, S. 1371–1375 CrossRefGoogle Scholar
  60. 60.
    Kreymann, B., Seige, M., Schweigart, U., Kopp, K., Classen, M., Albumin dialysis: effective removal of copper in a patient with fulminant Wilson disease and successful bridging to liver transplantation: a new possibility for the elimination of protein-bound toxins. Journal of Hepatology, 31 (6), 1999, S. 1080–1085CrossRefGoogle Scholar
  61. 61.
    Stange, J., Mitzner, S., Ramlow, W., et al., A new procedure for the removal of protein bound drugs and toxins. Asaio J, 39 (3), 1993, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8268613 S. M621–5 CrossRefGoogle Scholar
  62. 62.
    Stange, J., Ramlow, W., Mitzner, S., et al., Dialysis against a recycled albumin solution enables the removal of albumin-bound toxins. Artif Organs, 17 (9), 1993, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8240075 S. 809–13CrossRefGoogle Scholar
  63. 63.
    Evenepoel, P., Maes, B., Wilmer, A., et al., Detoxifying capacity and kinetics of the molecular adsorbent recycling system. Contribution of the different inbuilt filters. Blood Purif, 21 (3), 2003, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12784051 S. 244–52CrossRefGoogle Scholar
  64. 64.
    Falkenhagen, D., Strobl, W., Vogt, G., et al., Fractionated plasma separation and adsorption system: a novel system for blood purification to remove albumin bound substances. Artif Organs, 23 (1), 1999, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed& dopt=Citation&list_uids=9950184 S. 81–6CrossRefGoogle Scholar
  65. 65.
    Rifai, K., Ernst, T., Kretschmer, U., et al., Prometheus – a new extracorporeal system for the treatment of liver failure. J Hepatol, 39 (6), 2003, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14642616 S. 984–90CrossRefGoogle Scholar
  66. 66.
    Krisper, P., Haditsch, B., Stauber, R., et al., In vivo quantification of liver dialysis: comparison of albumin dialysis and fractionated plasma separation. J Hepatol, 43 (3), 2005, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list _uids=16023249 S. 451–7CrossRefGoogle Scholar
  67. 67.
    Iwata, H., Ueda, Y., Pharmacokinetic considerations in development of a bioartificial liver. Clin Pharmacokinet, 43 (4), 2004, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15005636 S. 211–25CrossRefGoogle Scholar
  68. 68.
    Rozga, J., Podesta, L., LePage, E., et al., A bioartificial liver to treat severe acute liver failure. Ann Surg, 219 (5), 1994, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8185403 S. 538–44; discussion 544–6Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christian Schreiber
    • 1
  • Ahmed N. AR. Al-Chalabi
    • 2
  • Oana Tanase
    • 2
  • Bernhard Kreymann
    • 2
    • 3
  1. 1.Klinik für Herz- und Gefäßchirurgie, Deutsches Herzzentrum MünchenKlinik an der TU MünchenMünchenDeutschland
  2. 2.Hepa Wash GmbHGarchingDeutschland
  3. 3.II. Medizinische Klinik und PoliklinikKlinikum rechts der Isar der TU MünchenMünchenDeutschland

Personalised recommendations