Advertisement

3D Mesh Approximation Using Vector Quantization

  • Michal Romaszewski
  • Przemysław Głomb
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 57)

Summary

We analyze the application of the Vector Quantization (VQ) for approximation of local 3D mesh fragments. Our objective is to investigate distortion resulting from representation of a mesh fragment with a set of symbols. We view this set of symbols as helpful for 3D object retrieval and comparision purposes, however here we focus solely on representation errors. We propose a mesh quantization scheme using Linde-Buzo-Gray (LBG) algorithm with appropriate mesh preprocessing and investigate the impact of codebook creation parameters on quantizer distortion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Linde, Y., Buzo, A., Gray, R.M.: An Algorithm for Vector Quantizer Design. IEEE Trans. Commun. COM-28, 84–95 (1980)Google Scholar
  2. 2.
    Hartigan, J.A., Wong, M.A.: A K-Means Clustering Algorithm. Applied Statistics 28, 100–108 (1979)CrossRefzbMATHGoogle Scholar
  3. 3.
    Alliez, P., Gotsman, C.: Recent Advances in Compression of 3D Meshes. In: Proceedings of the Symposium on Multiresolution in Geometric Modeling, pp. 3–26. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Gotsman, C., Gumhold, S., Kobbelt, L.: Simplification and Compression of 3D Meshes. In: Proceedings of the European Summer School on Principles of Multiresolution in Geometric Modelling, pp. 319–361. Springer, Heidelberg (2002)Google Scholar
  5. 5.
    Bustos, B., Keim, D.A., Saupe, D., Schreck, T., Vranić, D.V.: Feature-Based Similarity Search in 3D Object Databases. ACM Computing Surveys 37(4), 345–387 (2005)CrossRefGoogle Scholar
  6. 6.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Matching 3D Models with Shape Distributions. Shape Modeling International, 154 (2001)Google Scholar
  7. 7.
    Yu, P., Anastasios, Venetsanopoulos, N.: Improved Hierarchical Vector Quantization for Image Compression. In: Proceedings of the 36th Midwest Symposium on Circuits and Systems, Detroit, MI, USA, vol. 1, pp. 92–95 (1993)Google Scholar
  8. 8.
    Makur, A.: Vector Quantization of Images Using Input-Dependent Weighted Square Error Distortion. IEEE Transactions on Circuits and Systems for Video Technology 3(6), 435–439 (1993)CrossRefGoogle Scholar
  9. 9.
    Jain, A.K.(IEEE Fellow), Duin, R.P.W., Mao, J.: Statistical Pattern Recognition: A Review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)Google Scholar
  10. 10.
    Lee, E., Ko, H.: Vertex Data Compression For Triangular Meshes. In: Proceedings of Pacific Graphics, pp. 225–234 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michal Romaszewski
    • 1
  • Przemysław Głomb
    • 1
  1. 1.Institute of Theoretical and Applied Informatics of PASGliwicePoland

Personalised recommendations