Advertisement

Recognizing Anomalies/Intrusions in Heterogeneous Networks

  • Michał Choraś
  • Łukasz Saganowski
  • Rafał Renk
  • Rafał Kozik
  • Witold Hołubowicz
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 57)

Summary

In this paper innovative recognition algorithm applied to Intrusion and/or Anomaly Detection System presented. We propose to use Matching Pursuit Mean Projection (MP-MP) of the reconstructed network signal to recognize anomalies/intrusions in network traffic. The practical usability of the proposed approach in the intrusion detection tolerance system (IDTS) in the INTERSECTION project is presented.

Keywords

Intrusion Detection Heterogeneous Network Anomaly Detection Intrusion Detection System Intersection Project 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Esposito, M., Mazzariello, C., Oliviero, F., Romano, S.P., Sansone, C.: Evaluating Pattern Recognition Techniques in Intrusion Detection Systems. In: PRIS 2005, pp. 144–153 (2005)Google Scholar
  2. 2.
    Cheng, C.-M., Kung, H.T., Tan, K.-S.: Use of spectral analysis in defense against DoS attacks. In: IEEE GLOBECOM 2002, pp. 2143–2148 (2002)Google Scholar
  3. 3.
    Barford, P., Kline, J., Plonka, D., Ron, A.: A signal analysis of network traffic anomalies. In: ACM SIGCOMM Internet Measurement Workshop (2002)Google Scholar
  4. 4.
    Huang, P., Feldmann, A., Willinger, W.: A non-intrusive, wavelet-based approach to detecting network performance problems. In: ACM SIGCOMM Internet Measurement Workshop (November 2001)Google Scholar
  5. 5.
    Li, L., Lee, G.: DDos attack detection and wavelets. In: IEEE ICCCN 2003, October 2003, pp. 421–427 (2003)Google Scholar
  6. 6.
    Dainotti, A., Pescape, A., Ventre, G.: Wavelet-based Detection of DoS Attacks. In: 2006 IEEE GLOBECOM, San Francisco, CA, USA (November 2006)Google Scholar
  7. 7.
    Mallat, S., Zhang: Matching Pursuit with time-frequency dictionaries. IEEE Transactions on Signal Processing 41(12), 3397–3415 (1993)CrossRefzbMATHGoogle Scholar
  8. 8.
    Troop, J.A.: Greed is Good: Algorithmic Results for Sparse Approximation. IEEE Transactions on Information Theory 50(10) (October 2004)Google Scholar
  9. 9.
    Gribonval, R.: Fast Matching Pursuit with a Multiscale Dictionary of Gaussian Chirps. IEEE Transactions on Signal Processing 49(5) (May 2001)Google Scholar
  10. 10.
    Jost, P., Vandergheynst, P., Frossard, P.: Tree-Based Pursuit: Algorithm and Properties. In: Swiss Federal Institute of Technology Lausanne (EPFL), Signal Processing Institute Technical Report. TR-ITS-2005.013 (May 17, 2005)Google Scholar
  11. 11.
    Andrysiak, T., Choraś, M.: Image Retrieval Based on Hierarchical Gabor Filters. International Journal Applied Mathematics and Computer Science (AMCS) 15(4), 471–480 (2005)zbMATHGoogle Scholar
  12. 12.
    Dainotti, A., Pescape, A., Ventre, G.: Worm Traffic Analysis and Characterization. In: Proceedings of ICC, pp. 1435–1442. IEEE CS Press, Los Alamitos (2007)Google Scholar
  13. 13.
    Renk, R., Saganowski, Ł., Hołubowicz, W., Choraś, M.: Intrusion Detection System Based on Matching Pursuit. In: Proc. Intelligent Networks and Intelligent Systems, ICINIS 2008, pp. 213–216. IEEE CS Press, Los Alamitos (2008)CrossRefGoogle Scholar
  14. 14.
    Saganowski, Ł., Choraś, M., Renk, R., Hołubowicz, W.: Signal-based Approach to Anomaly Detection in IDS Systems. International Journal of Intelligent Engineering and Systems 1(4), 18–24 (2008)Google Scholar
  15. 15.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michał Choraś
    • 1
    • 2
  • Łukasz Saganowski
    • 2
  • Rafał Renk
    • 1
    • 3
  • Rafał Kozik
    • 2
  • Witold Hołubowicz
    • 1
    • 3
  1. 1.ITTI Ltd.PoznańPoland
  2. 2.Institute of Telecommunications, UT&LS BydgoszczPoland
  3. 3.Adam Mickiewicz UniversityPoznańPoland

Personalised recommendations