Advertisement

An Adaptive Spell Checker Based on PS3M: Improving the Clusters of Replacement Words

  • Renato Cordeiro de Amorim
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 57)

Summary

In this paper the author presents a new similarity measure for strings of characters based on S3M which he expands to take into account not only the characters set and sequence but also their position.

After demonstrating the superiority of this new measure and discussing the need for a self adaptive spell checker, this work is further developed into an adaptive spell checker that produces a cluster with a defined number of words for each presented misspelled word. The accuracy of this solution is measured comparing its results against the results of the most widely used spell checker.

Keywords

Target Word Intrusion Detection System Spelling Error Correct Spelling Adaptive Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hodge, V.J., Austin, J.: A Comparison of a Novel Neural Spell Checker and Standard Spell Checking Algorithms. Pattern Recognition 35, 2571–2580 (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Kukich, K.: Techniques for Automatically Correcting Words in Text. ACM Comput. Surveys 24(4), 377–439 (1992)CrossRefGoogle Scholar
  3. 3.
    Dalianis, H.: Evaluating a Spelling Support in a Search Engine. In: Andersson, B., Bergholtz, M., Johannesson, P. (eds.) NLDB 2002. LNCS, vol. 2553, pp. 183–190. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Knutsson, O.: Automatisk språkgranskning av svensk text (in Swedish) (Automatic Proofreading of Swedish text). Licentiate Thesis, IPLAB-NADA, Royal Institute of Technology, KTH, Stockholm (2001)Google Scholar
  5. 5.
    Montgomery, D.J., Karlan, G.R., Coutinho: The Effectiveness of Word Processor Spell Checker Programs to Produce Target Words for Misspellings Generated by Students With Learning Disabilities. JSET E Journal 16(2) (2001)Google Scholar
  6. 6.
    Gerlach, G.J., Johnson, J.R., Ouyang, R.: Using an electronic speller to correct misspelled words and verify correctly spelled words. Reading Improvement 28, 188–194 (1991)Google Scholar
  7. 7.
    MacArthur, C.A., Graham, S., Haynes, J.B., DeLaPaz, S.: Spell checkers and students with learning disabilities: Performance comparisons and impact on spelling. Journal of Special Education 30, 35–57 (1996)CrossRefGoogle Scholar
  8. 8.
    Garfinkel, R., Fernandez, E., Gobal, R.: Design of an Interactive spell checker: Optimizing the list of offered words. Decision Support Systems (35), 385–397 (2003)Google Scholar
  9. 9.
    Nuance, International CorrectSpell (2000), http://www.lhs.com/tech/icm/proofing/cs.asp (accessed 2003)
  10. 10.
    Seth, D., Kokar, M.M.: SSCS: A Smart Spell Checker System Implementation Using adaptive Software Architecture. In: Laddaga, R., Shrobe, H.E., Robertson, P. (eds.) IWSAS 2001. LNCS, vol. 2614, pp. 187–197. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Vaubel, K.P., Gettys, C.F.: Inferring user expertise for adaptive interfaces. Human Computer Interaction 5, 95–117 (1990)CrossRefGoogle Scholar
  12. 12.
    Kumar, P., Bapi, R.S., Krishna, P.R.: SeqPAM: A Sequence Clustering Algorithm for Web Personalization. In: Poncelet, P., Masseglia, F., Teissseire, M. (eds.) Successes and New Directions in Data Mining, pp. 17–38. Information Science Reference, USA (2007)CrossRefGoogle Scholar
  13. 13.
    Kumar, P., Rao, M.V., Krishna, P.R., Bapi, R.A., Laha, A.: Intrusion Detection System Using Sequence and Set Preserving Metric. In: Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang, F.-Y., Chen, H., Merkle, R.C. (eds.) ISI 2005. LNCS, vol. 3495, pp. 498–504. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Mirkin, B.: Clustering for Data Mining: A Data Recovery Approach. Chapman and Hall/CRC, Boca Raton (2005)CrossRefGoogle Scholar
  15. 15.
    Amorim, R.C.: Constrained Intelligent K-Means: Improving Results with Limited Previous Knowledge. In: Proceeding of Advanced Engineering Computing and Applications in Sciences, pp. 176–180. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  16. 16.
    Aspell .Net, Spell Checker Test Kernel Results (2008) (updated May 14, 2008), http://aspell.net/test/cur/ (accessed February 10, 2009)

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Renato Cordeiro de Amorim
    • 1
  1. 1.School of Computer Science and Information SystemsBirkbeck, University of LondonLondonUK

Personalised recommendations