Low-Cost Adaptive Edge-Based Single-Frame Superresolution

  • Zbigniew Świerczyński
  • Przemysław Rokita
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 57)


In this paper we propose a simple but efficient method for increasing resolution of digital images. Such algorithms are needed in many practical applications like for example digital zoom in camcorders or conversion between conventional TV content and high resolution HDTV format. In general the main problem when converting an image to higher resolution is the lack of high frequency components in the resulting image. The result is the blurry aspect of images obtained using conventional algorithms like, for example, commonly used bilinear or bicubic interpolation. High frequency components in the frequency domain correspond to the image edges in the spatial domain. Building on this simple constatation here we propose to reconstruct high frequency components and sharp aspect of resulting images using edge information.


Original Image High Resolution Image High Frequency Component Edge Information Bicubic Interpolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jankowska, J., Jankowski, M.: A Review of Methods and Numerical Algorithms. Wydawnictwa Naukowo-Techniczne. Scientific-Technical Publishers, Warsaw (1988)Google Scholar
  2. 2.
    Wróbel, Z., Koprowski, R.: Processing of an Image in MATLAB Program. Silesian University Publisher, Katowice (2001)Google Scholar
  3. 3.
    Malina, W., Smiatacz, M.: Methods of Digital Processing of Images, Akademicka Akademicka Oficyna Wydawnicza EXIT, Warsaw. Academic Publisher - EXITGoogle Scholar
  4. 4.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992), Google Scholar
  5. 5.
    Image processing toolbox - user guide for use with Matlab version 3, The Math Works Inc. (2001)Google Scholar
  6. 6.
    Tadusiewicz, R., Korohoda, P.: Computer Analysis and Images Processing. Publisher of Telecommunication Progress Foundation, Cracow (1997)Google Scholar
  7. 7.
    Bose, N.K., Lertarattanapanich, S., Chappalli, M.B.: Superresolution with second generation wavelets. Signal processing: Image Communication 19, 387–391 (2004)Google Scholar
  8. 8.
  9. 9.
    Candocia, F.M., Principe, J.C.: Superresolution of image based on local correlations. IEEE Transactions on Neural Networks 10(2), 372–380 (1999)CrossRefGoogle Scholar
  10. 10.
    Chen, T.: A study of spatial color interpolation algorithms for single-detector digital cameras,
  11. 11.
    Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based Super-resolution. IEEE ComputerGraphits and Applications (March/April 2002)Google Scholar
  12. 12.
    Baker, S., Kanade, T.: Super-resolution optical flow, Technical Report CMU-RI-TR-99-36, Carnegy Mellon University (1999)Google Scholar
  13. 13.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  14. 14.
    Świerczyński, Z., Rokita, P.: Increasing resolution of digital images using edge-based approach. Opto Electronic Review 16(1), 76–84 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Zbigniew Świerczyński
    • 1
  • Przemysław Rokita
    • 1
  1. 1.Cybernetics FacultyMilitary University of TechnologyWarsawPoland

Personalised recommendations