Advertisement

Dynamic Contour Detection of Heart Chambers in Ultrasound Images for Cardiac Diagnostics

  • Pawel Hoser
Chapter
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 57)

Summary

The contour detection of moving left ventricle is very useful in cardiac diagnosis. The subject of this paper is to introduce the contour detection method for moving objects in the unclear biomedical images series. This method is mainly dedicated to be used for heart chamber contours in ultrasound images. In such images the heart chambers are visible much better if they are viewed in their movement. That is why for a good automatic contour detection the analysis of the whole series of images is needed. This method is suitable for the analysis of the heart ultrasound images. The contour detection method has been programmed and tested with the series of ultrasound images, with an example of finding the left ventricle contours. The presented method has been later modified to be even more effective. The last results seems to be quite interesting in some cases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kulikowski, J.L., Przytulska, M., Wierzbicka, D.: Left Heart Ventricle Contractility Assessment Based on Kinetic Model. In: ESEM 1999, Barcelona, pp. 447–448 (1999)Google Scholar
  2. 2.
    Przytulska, M., Kulikowski, J.L.: Left Cardiac Ventricle’s Contractility Based on Spectral Analysis of Ultrasound Imaging. Biocybernetics and Biomedical Engineering 27(4), 17–28 (2007)Google Scholar
  3. 3.
    Hoser, P.: A Mathematical Model of the Left Ventricle Surface and a Program for Visualization and Analysis of Cardiac Ventricle Functioning. Task Quarterly 8(2), 249–257 (2004)Google Scholar
  4. 4.
    Feigenbaum, H.: Echocardiography, 5th edn. Lea & Febiger, Philadelphia (1994)Google Scholar
  5. 5.
    Goetz, A.: Introduction to differential geometry of curve and surfaces. Prentice-Hall, Englewood Cliffs (1970)Google Scholar
  6. 6.
    Mlsna, P.A., Rodriguez, J.J.: Gradient and Laplacian-Type Edge Detection. In: Bovik, A. (ed.) Handbook of Image and Video Processing, San Diego. Academic Press Series in Communications, pp. 415–432 (2000)Google Scholar
  7. 7.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1988)CrossRefGoogle Scholar
  8. 8.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22, 61–79 (1997)CrossRefzbMATHGoogle Scholar
  9. 9.
    Cohen, L.D.: Active contour models and balloons. Computer Graphics and Image Processing: Image Understanding 53(2), 211–218 (1991)zbMATHGoogle Scholar
  10. 10.
    Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal path approach. International Journal of Computer Vision 24, 57–78 (1997)CrossRefGoogle Scholar
  11. 11.
    Chan, T.F., Vese, L.A.: An active contour model without edges. IEEE Transactions on Image Processing 10, 266–277 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Fejes, S., Rosenfeld, A.: Discrete active models and applications. Pattern Recognition 30, 817–835 (1997)CrossRefGoogle Scholar
  13. 13.
    Ji, L.L., Yan, H.: Attractable snakes based on the greedy algorithm for contour extraction. Pattern Recognition 35, 791–806 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Mclnerney, T., Trerzopoulos, D.: Topologically adaptable snakes. In: Proc. IEEE Conf. Computer Vision, ICCV 1995, pp. 840–845 (1995)Google Scholar
  15. 15.
    Niessen, W.J., Romeny, B.M.T., Viergever, M.A.: Geodesic deformable models for medical image analysis. IEEE Transactions on Medical Imaging 17, 634–641 (1998)CrossRefGoogle Scholar
  16. 16.
    Xu, C.Y., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing 7, 359–369 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Blake, A., Curwen, R., Zisserman, A.: A framework for spatio-temporal control in the tracking of visual contour. Int. J. Comput. Vis. 11(2), 127–145 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Pawel Hoser
    • 1
  1. 1.Institute of Biocybernetics and Biomedical Engineering PASPoland

Personalised recommendations