Analysis of Changes in Heart Ventricle Shape Using Contextual Potential Active Contours

  • Arkadiusz Tomczyk
  • Cyprian Wolski
  • Piotr S. Szczepaniak
  • Arkadiusz Rotkiewicz
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 57)


In this paper the application of potential active contour method (PAC) for heart ventricle segmentation is presented. Identification of those contours can be useful in pulmonary embolism diagnostic since the obstruction of pulmonary arteries by the emboli causes changes in the shape of heart chamber. The manual process of contour drawing is time-consuming. Thus its automatic detection can significantly improve diagnostic process.


Pulmonary Embolism Image Segmentation Active Contour Interventricular Septum Heart Ventricle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kass, M., Witkin, W., Terzopoulos, S.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–333 (1988)CrossRefGoogle Scholar
  2. 2.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (2000)CrossRefGoogle Scholar
  3. 3.
    Grzeszczuk, R., Levin, D.: Brownian strings: Segmenting images with stochastically deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(10), 1100–1113 (1997)CrossRefGoogle Scholar
  4. 4.
    Cohen, A.T., Agnelli, G., Anderson, F.A., et al.: Venous thromboembolism (VTE) in europe. The number of VTE events and associated morbidity and mortality. Thrombosis and Haemostasis 98(4), 756–764 (2007)Google Scholar
  5. 5.
    Egermayer, P., Peacock, A.J.: Is pulmonary embolism a common cause of chronic pulmonary hypertension? limitations of the embolic hypothesis. European Respiratory Journal 15(3), 440–448 (2000)CrossRefGoogle Scholar
  6. 6.
    Miller, G.A., Sutton, G.C., Kerr, I.H., et al.: Comparison of streptokinase and heparin in treatment of isolated acute massive pulmonary embolism. British Medical Journal 2(5763), 681–684 (1971)CrossRefGoogle Scholar
  7. 7.
    Qanadli, S.D., El, H.M., Vieillard-Baron, A., et al.: New CT index to quantify arterial obstruction in pulmonary embolism: comparison with angiographic index and echocardiography. American Journal of Roentgenology 176(6), 1415–1420 (2001)CrossRefGoogle Scholar
  8. 8.
    Dellegrottaglie, S., Sanz, J., Poon, M., et al.: Pulmonary hypertension: accuracy of detection with left ventricular septal-to-free wall curvature ratio measured at cardiac mr. Radiology 243(1), 63–69 (2007)CrossRefGoogle Scholar
  9. 9.
    Tomczyk, A., Szczepaniak, P.S.: On the relationship between active contours and contextual classification. In: Kurzyñski, M., et al. (eds.) Proceedings of the 4th Int. Conference on Computer Recognition Systems (CORES 2005), pp. 303–310. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Tadeusiewicz, R., Flasinski, M.: Rozpoznawanie obrazow. Wydawnictwo Naukowe. PWN, Warszawa (1991) (in Polish)Google Scholar
  11. 11.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  12. 12.
    Devijver, P.A., Kittler, J.: Pattern Recognition. A Statistical Approach. Prentice-Hall, Inc., Englewood Cliffs (1982)zbMATHGoogle Scholar
  13. 13.
    Tomczyk, A., Szczepaniak, P.S.: Contribution of active contour approach to image understanding. In: Proceedings of IEEE International Workshop on Imaging Systems and Techniques (IST 2007) (May 2007) ISBN: 1-4244-0965-9Google Scholar
  14. 14.
    Tomczyk, A., Szczepaniak, P.S.: Adaptive potential active hypercontours. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS, vol. 4029, pp. 499–508. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Szczepaniak, P.S., Tomczyk, A., Pryczek, M.: Supervised web document classification using discrete transforms, active hypercontours and expert knowledge. In: Zhong, N., Liu, J., Yao, Y., Wu, J., Lu, S., Li, K. (eds.) Web Intelligence Meets Brain Informatics. LNCS(LNAI), vol. 4845, pp. 305–323. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Tomczyk, A., Szczepaniak, P.S., Pryczek, M.: Active contours as knowledge discovery methods. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS(LNAI), vol. 4755, pp. 209–218. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Pryczek, M.: Supervised object classification using adaptive active hypercontours with growing neural gas representation. Journal of Applied Computer Science 16(2) (2008)Google Scholar
  18. 18.
    Tomczyk, A.: Image segmentation using adaptive potential active contours. In: Kurzynski, M., Puchala, E., Wozniak, M., Zolnierek, A. (eds.) Proceedings of 5th International Conference on Computer Recognition Systems, CORES 2007, pp. 148–155. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Arkadiusz Tomczyk
    • 1
  • Cyprian Wolski
    • 2
  • Piotr S. Szczepaniak
    • 1
  • Arkadiusz Rotkiewicz
    • 2
  1. 1.Institute of Computer ScienceTechnical University of LodzLodzPoland
  2. 2.Department of Radiology and Diagnostic ImagingMedical University of Lodz, Barlicki University HospitalLodzPoland

Personalised recommendations