Multistrategic Classification System of Melanocytic Skin Lesions: Architecture and First Results

  • Pawel Cudek
  • Jerzy W. Grzymala-Busse
  • Zdzislaw S. Hippe
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 57)


The paper presents a verified project of a computer system for multistrategic classification of melanocytic skin lesions, based on image analysis reinforced by machine learning and decision-making algorithms with the use of voting procedures. We applied Stolz, Menzies and Argenziano strategies.


Vote Procedure Edge Detection Algorithm Melanocytic Lesion Dermal Lesion Close Range Photogrammetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Triller, R., Aitken, G., Luc, T.: Atlas of Dermatoscopy of Pigmented Skin Tumors (2008), http://www.plessfr/dermatoscopieGoogle Scholar
  3. 3.
    Stolz, W., Braun-Falco, O., Bilek, P., Landthaler, M., Burgdorf, W., Cognetta, A.: Atlas of Dermatoscopy. In: Czelej (ed.) Office, Lublin, Poland, p. 210 (2006) (in Polish)Google Scholar
  4. 4.
    Menzies, S.W.: Surface microscopy of pigmented skin tumors. Australas J. Dermatol. 38, 40–43 (1997)Google Scholar
  5. 5.
    Argenziano, G., Fabbrocini, G., Carli, P., De Giorgi, V., Sammarco, E., Delfino, M.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch. Dermatol. 134, 1563–1570 (1998)Google Scholar
  6. 6.
    Cichosz, P.: Learning Systems, pp. 565–567. WNT, Warsaw (2000) (in Polish)Google Scholar
  7. 7.
    Grzymala-Busse, J.W., Hippe, Z.S., Knap, M., Paja, W.: Infoscience Technology: The Impact of Internet Accessible Melanoid Data on Health Issues. Data Science Journal 4, 77–81 (2005)Google Scholar
  8. 8.
    Triller, R.: Quiz of Dermatoscopy. Diagnosis of pigmented skin tumors (2008)Google Scholar
  9. 9.
    Ludwiczuk, R.: Canny Edge Detection Algorithm in Medical Image Segmentation Process. In: II Conference of Computer Enthusiasts, Cheşm (2003) (in Polish)Google Scholar
  10. 10.
    Czechowicz, A., Mikrut, S.: Review of Edge Detection Algorithms in Close Range Photogrammetry. Archive of Photogrammetry, Cartography and Teledetection 16, 135–146 (2006) (in Polish)Google Scholar
  11. 11.
    Ng, V., Cheung, D.: Measuring Asymmetry of Skin Lesions. Proc. Computational Cybernetics and Simulationapos, 4211–4216 (1997)Google Scholar
  12. 12.
    d’Amico, M., Ferri, M., Stanganelli, I.: Qualitative Asymmetry Measure for melanoma detection. In: Proc. International Symposium on Volume, pp. 1155–1158 (2004)Google Scholar
  13. 13.
    Seidenari, S., Burroni, M., Dell’Eva, G., Pepe, P.: Computerized evaluation of pigmented skin lesion images recorded by a videomicroscope: compersion between polarizing mode observation and oil/slide mode observation. Skin Res. Technol., 187–191 (1995)Google Scholar
  14. 14.
    Green, A., Martin, N., Pfitzner, J., O’Rourke, M.: Computer image analysis in the diagnosis of melanoma. Journal of the American Academy of Dermatology 31, 958–964 (1994)Google Scholar
  15. 15.
    Horsch, A., Stolz, W., Neiss, A., Abmayr, W., Pompl, R., Bernklau, A., Bunk, W., Dersch, D.R., Glassl, A., Achiffner, R., Morfill, G.: Improving early recognition of malignant melanomas by digital image analysis in dermatoscopy. Stud. Health Technol. Inform. 43, 531–535 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Pawel Cudek
    • 1
  • Jerzy W. Grzymala-Busse
    • 1
    • 2
  • Zdzislaw S. Hippe
    • 1
  1. 1.University of Information Technology and ManagementRzeszowPoland
  2. 2.University of KansasLawrenceUSA

Personalised recommendations