Dominance-Based Rough Set Approach Employed in Search of Authorial Invariants

  • Urszula Stanczyk
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 57)


Mechanisms for interpretation and manipulation of data required in decision support systems quite often deal with cases when knowledge is uncertain or incomplete. Dominance-based Rough Set Approach is an example of such methodology, dedicated to analysis of data with ordinal properties, with dominance relation substituting that of indiscernibility of objects as defined by Classical Rough Set Approach. The paper presents application of DRSA procedures to the problem of stylometric analysis of literary texts, which by the notion of its primary concept of authorial invariants enables to identify authors of unattributed or disputed texts.


Decision Algorithm Decision Table Decision Attribute Literary Text Indiscernibility Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argamon, S., Karlgren, J., Shanahan, J.G.: Stylistic analysis of text for information access. In: Proceedings of the 28th International ACM Conference on Research and Development in Information Retrieval, Brazil (2005)Google Scholar
  2. 2.
    Cyran, K.A., Mrozek, A.: Rough sets in hybrid methods for pattern recognition. International Journal of Intelligent Systems 16, 149–168 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Cyran, K.A., Stanczyk, U.: Indiscernibility relation for continuous attributes: application in image recognition. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS(LNAI), vol. 4585, pp. 726–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Greco, S., Matarazzo, B., Slowinski, R.: Handling missing values in rough set analysis of multi-attribute and multi-criteria decision problems. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS(LNAI), vol. 1711, pp. 146–157. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Greco, S., Matarazzo, B., Slowinski, R.: The use of rough sets and fuzzy sets in MCDM. In: Gal, T., Hanne, T., Stewart, T. (eds.) Advances in Multiple Criteria Decision Making, ch. 14, pp. 14.1–14.59. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  6. 6.
    Greco, S., Matarazzo, B., Slowinski, R.: Dominance-based rough set approach as a proper way of handling graduality in rough set theory. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W.P. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 36–52. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Pawlak, Z.: Rough set rudiments. Technical report, Institute of Computer Science Report, Warsaw University of Technology, Warsaw, Poland (1996)Google Scholar
  8. 8.
    Peng, R.D., Hengartner, H.: Quantitative analysis of literary styles. The American Statistician 56(3), 15–38 (2002)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Slowinski, R., Greco, S., Matarazzo, B.: Dominance-based rough set approach to reasoning about ordinal data. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS(LNAI), vol. 4585, pp. 5–11. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Urszula Stanczyk
    • 1
  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations