Advertisement

A Novel Ensemble of Scale-Invariant Feature Maps

  • Bruno Baruque
  • Emilio Corchado
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 57)

Summary

A novel method for improving the training of some topology preserving algorithms as the Scale Invariant Feature Map (SIM) and the Maximum Likelihood Hebbian Learning Scale Invariant Map (MAX-SIM) is presented and analyzed in this study. It is called Weighted Voting Superposition (WeVoS), providing two new versions, the WeVoS-SIM and the WeVoS-MAX-SIM. The method is based on the training of an ensemble of networks and the combination of them to obtain a single one, including the best features of each one of the networks in the ensemble. To accomplish this combination, a weighted voting process takes place between the units of the maps in the ensemble in order to determine the characteristics of the units of the resulting map. For comparison purposes these new models are compared with their original models, the SIM and MAX-SIM. The models are tested under the frame of an artificial data set. Three quality measures have been applied for each model in order to present a complete study of their capabilities. The results obtained confirm that the novel models presented in this study based on the application of WeVoS can outperform the classic models in terms of organization of the presented information.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barna, G., Chrisley, R., Kohonen, T.: Statistical pattern recognition with neural networks. Neural Networks 1, 1–7 (1988)CrossRefGoogle Scholar
  2. 2.
    Baruque, B., Corchado, E., Yin, H.: ViSOM Ensembles for Visualization and Classification. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 235–243. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Corchado, E., Baruque, B., Yin, H.: Boosting Unsupervised Competitive Learning Ensembles. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 339–348. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Corchado, E., Fyfe, C.: Maximum Likelihood Topology Preserving Algorithms. In: U.K. Workshop on Computational Intelligence (2002)Google Scholar
  6. 6.
    Corchado, E., Fyfe, C.: The Scale Invariant Map and Maximum Likelihood Hebbian Learning. In: International Conference on Knowledge-Based & Intelligent Information & Engineering System (2002)Google Scholar
  7. 7.
    Corchado, E., MacDonald, D., Fyfe, C.: Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit. Data Mining and Knowledge Discovery 8, 203–225 (2004)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Fyfe, C.: A scale-invariant feature map. Network: Computation in Neural Systems 7, 269–275 (1996)CrossRefGoogle Scholar
  9. 9.
    Fyfe, C., Corchado, E.: Maximum likelihood Hebbian rules. In: European Symposium on Artificial Neural Networks (ESANN) (2002)Google Scholar
  10. 10.
    Georgakis, A., Li, H., Gordan, M.: An ensemble of SOM networks for document organization and retrieval. In: International Conference on Adaptive Knowledge Representation and Reasoning (AKRR 2005), pp. 6–141 (2005)Google Scholar
  11. 11.
    Heskes, T.: Balancing between bagging and bumping. In: Advances in Neural Information Processing Systems, vol. 9, pp. 466–472 (1997)Google Scholar
  12. 12.
    Johansson, U., Lofstrom, T., Niklasson, L.: Obtaining accurate neural network ensembles. In: International Conference on Computational Intelligence for Modelling, Control & Automation Jointly with International Conference on Intelligent Agents, Web Technologies & Internet Commerce, Proceedings, vol. 2, pp. 103–108.Google Scholar
  13. 13.
    Kaski, S., Lagus, K.: Comparing Self-Organizing Maps. In: Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 809–814. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  14. 14.
    Kiviluoto, K.: Topology preservation in self-organizing maps. In: IEEE International Conference on Neural Networks (ICNN 1996), vol. 1, pp. 294–299 (1996)Google Scholar
  15. 15.
    Kohonen, T.: The self-organizing map. Neurocomputing 21, 1–6 (1998)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kohonen, T.: Self-Organizing Maps. Springer, Berlin (1995)CrossRefGoogle Scholar
  17. 17.
    Kohonen, T., Lehtio, P., Rovamo, J., Hyvarinen, J., Bry, K., Vainio, L.: A principle of neural associative memory. Neuroscience 2, 1065–1076 (1977)CrossRefGoogle Scholar
  18. 18.
    Lampinen, J.: On Clustering Properties of Hierarchical Self-Organizing Maps. Artificial Neural Networks 2, 1219–1222 (1992)CrossRefGoogle Scholar
  19. 19.
    Petrakieva, L., Fyfe, C.: Bagging and Bumping Self Organising Maps. Computing and Information Systems Journal, 1352–1404 (2003)Google Scholar
  20. 20.
    Polani, D.: Measures for the Organization of Self-Organizing Maps. In: Self-organizing Neural Networks: Recent Advances and Applications. Studies in Fuzziness and Soft Computing, pp. 13–44 (2003)Google Scholar
  21. 21.
    Polzlbauer, G.: Survey and Comparison of Quality Measures for Self-Organizing Maps. In: Fifth Workshop on Data Analysis (WDA 2004), pp. 67–82. Elfa Academic Press, London (2004)Google Scholar
  22. 22.
    Saavedra, C., Salas, R., Moreno, S., Allende, H.: Fusion of Self Organizing Maps. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 227–234. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Vesanto, J., Sulkava, M., Hollen, J.: On the Decomposition of the Self-Organizing Map Distortion Measure. In: Proceedings of the Workshop on Self-Organizing Maps (WSOM 2003), pp. 11–16 (2003)Google Scholar
  24. 24.
    Voronoi, G.: Nouvelles applications des parametres continus a la theorie des formes quadratiques. Math. 133, 97–178 (1907)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Bruno Baruque
    • 1
  • Emilio Corchado
    • 1
  1. 1.University of BurgosPoland

Personalised recommendations