Advertisement

The Adaptive Fuzzy Meridian and Its Appliction to Fuzzy Clustering

  • Tomasz Przybyla
  • Janusz Jezewski
  • Krzysztof Horoba
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 57)

Summary

The fuzzy clustering methods are useful in the data mining field of applications. In this paper a new clustering method that deals with data described by the meridian distribution is presented. The fuzzy meridian is used as the cluster prototype. Simple computation method for the fuzzy meridian is given as well as the meridian medianity parameter. A numerical example illustrates the performance of the proposed method.

Keywords

Fuzzy Cluster Medianity Parameter Partition Matrix Fuzzy Cluster Method Prototype Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huber, P.: Robust statistics. Wiley, New York (1981)CrossRefzbMATHGoogle Scholar
  2. 2.
    Dave, R.N., Krishnapuram, R.: Robust Clustering Methods: A Unified View. IEEE Trans. on Fuzzy System 5, 270–293 (1997)CrossRefGoogle Scholar
  3. 3.
    Łeski, J.: An ε–Insensitive Approach to Fuzzy Clustering. Int. J. Appl. Math. Comput. Sci. 11, 993–1007 (2001)Google Scholar
  4. 4.
    Chatzis, S., Varvarigou, T.: Robust Fuzzy Clustering Using Mixtures of Student’s–t Distributions. Pattern Recognition Letters 29, 1901–1905 (2008)CrossRefGoogle Scholar
  5. 5.
    Frigui, H., Krishnapuram, R.: A Robust Competitive Clustering Algorithm With Applications in Computer Vision. IEEE Trans. Pattern Analysis and Machine Intelligence 21, 450–465 (1999)CrossRefGoogle Scholar
  6. 6.
    Kaufman, L., Rousseeuw, P.: Finding Groups in Data. Wiley–Interscience, Chichester (1990)CrossRefGoogle Scholar
  7. 7.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)CrossRefzbMATHGoogle Scholar
  8. 8.
    Pedrycz, W.: Konwledge–Based Clustering. Wiley–Interscience, Chichester (2005)Google Scholar
  9. 9.
    Aysal, T.C., Barner, K.E.: Meridian Filtering for Robust Signal Processing. IEEE Trans. on Signal Proc. 55, 3949–3962 (2007)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Parzen, E.: On Estimation Of A Probability Density Function And Mode. Ann. Math. Stat. 33, 1065–1076 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Kersten, P.R.: Fuzzy Order Statistics and Their Application to Fuzzy Clustering. IEEE Trans. On Fuzzy Sys. 7, 708–712 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tomasz Przybyla
    • 1
  • Janusz Jezewski
    • 2
  • Krzysztof Horoba
    • 2
  1. 1.Institute of ElectronicsSilesian University of TechnologyGliwicePoland
  2. 2.Departament of Biomedical InformaticsInstitute of Medical Technology and Equipment ITAMZabrzePoland

Personalised recommendations