Patchwork Neuro-fuzzy System with Hierarchical Domain Partition

  • Krzysztof Simiński
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 57)


The paper presents the patchwork hierarchical domain partition in the neuro-fuzzy system with parameterized consequences. The hierarchical domain partition has the advantages of grid partition and clustering. It avoids the curse of dimensionality and reduces the occurrence of areas with low membership to all regions. The paper depicts the iterative hybrid procedure of hierarchical split. The splitting procedure estimates the best way of creating of the new region: (1) based on finding and splitting the region with the highest contribution to the error of the system or (2) creation of patch region for the highest error area. The paper presents the results of experiments on real life and synthetic datasets. This approach can produce neuro-fuzzy inference systems with better generalisation ability and subsequently lower error rate.


Root Square Mean Error Fuzzy Inference System Isosceles Triangle Input Domain Good Generalisation Ability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roberto, M., Almeida, A.: Sistema híbrido neuro-fuzzy-genético para mineração automática de dados. Master’s thesis, Pontifíca Universidade Católica do Rio de Janeiro (2004)Google Scholar
  2. 2.
    Basak, J., Krishnapuram, R.: Interpretable hierarchical clustering by constructing an unsupervised decision tree. IEEE Transactions on Knowledge and Data Engineering 17(1), 121–132 (2005)CrossRefGoogle Scholar
  3. 3.
    Edward, G., Box, P., Jenkins, G.: Time Series Analysis, Forecasting and Control. Holden-Day, Incorporated (1976)Google Scholar
  4. 4.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth, Belmont (1984)zbMATHGoogle Scholar
  5. 5.
    Czekalski, P.: Evolution-fuzzy rule based system with parameterized consequences. International Journal of Applied Mathematics and Computer Science 16(3), 373–385 (2006)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Czogała, E., Łȩski, J.: Fuzzy and Neuro-Fuzzy Intelligent Systems. Series in Fuzziness and Soft Computing. Physica-Verlag, A Springer-Verlag Company (2000)Google Scholar
  7. 7.
    Jang, J.-S.R.: ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics 23, 665–684 (1993)CrossRefGoogle Scholar
  8. 8.
    Łȩski, J.: Systemy neuronowo-rozmyte. Wydawnictwa Naukowo-Techniczne, Warszawa (2008)Google Scholar
  9. 9.
    Łȩski, J., Czogała, E.: A new artificial neural network based fuzzy inference system with moving consequents in if-then rules and selected applications. BUSEFAL 71, 72–81 (1997)Google Scholar
  10. 10.
    Łȩski, J., Czogała, E.: A new artificial neural network based fuzzy inference system with moving consequents in if-then rules and selected applications. Fuzzy Sets and Systems 108(3), 289–297 (1999)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7(1), 1–13 (1975)CrossRefzbMATHGoogle Scholar
  12. 12.
    Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision trees. Journal of Artificial Intelligence Research 2, 1–32 (1994)zbMATHGoogle Scholar
  13. 13.
    Nelles, O., Isermann, R.: Basis function networks for interpolation of local linear models. In: Proceedings of the 35th IEEE Conference on Decision and Control, vol. 1, pp. 470–475 (1996)Google Scholar
  14. 14.
    Nelles, O., Fink, A., Babuška, R., Setnes, M.: Comparison of two construction algorithms for Takagi-Sugeno fuzzy models. International Journal of Applied Mathematics and Computer Science 10(4), 835–855 (2000)zbMATHGoogle Scholar
  15. 15.
    Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)Google Scholar
  16. 16.
    Quinlan, J.R.: Learning with continuous classes. In: Adams, Sterling (eds.) AI 1992, Singapore, pp. 343–348 (1992)Google Scholar
  17. 17.
    Quinlan, J.R.: Combining instance-based and model-based learning. In: Utgoff (ed.) ML 1993, San Mateo (1993)Google Scholar
  18. 18.
    Rastogi, R., Shim, K.: PUBLIC: A decision tree classifier that integrates building and pruning. Data Mining and Knowledge Discovery 4(4), 315–344 (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Rutkowski, L., Cpałka, K.: Flexible neuro-fuzzy systems. IEEE Transactions on Neural Networks 14(3), 554–574 (2003)CrossRefGoogle Scholar
  20. 20.
    Simiński, K.: Neuro-fuzzy system with hierarchical partition of input domain. Studia Informatica 29(4A (80)) (2008)Google Scholar
  21. 21.
    Simiński, K.: Two ways of domain partition in fuzzy inference system with parametrized consequences: Clustering and hierarchical split. In: OWD 2008, X International PhD Workshop, pp. 103–108 (2008)Google Scholar
  22. 22.
    de Souza, F.J., Vellasco, M.B.R., Pacheco, M.A.C.: Load forecasting with the hierarchical neuro-fuzzy binary space partitioning model. Int. J. Comput. Syst. Signal 3(2), 118–132 (2002)Google Scholar
  23. 23.
    de Souza, F.J., Vellasco, M.M.R., Pacheco, M.A.C.: Hierarchical neuro-fuzzy quadtree models. Fuzzy Sets and Systems 130(2), 189–205 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Sugeno, M., Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28(1), 15–33 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Systems, Man and Cybernetics 15(1), 116–132 (1985)CrossRefzbMATHGoogle Scholar
  26. 26.
    Wang, Y., Witten, I.H.: Inducing model trees for continuous classes. In: Proc. of Poster Papers, 9th European Conference on Machine Learning, Prague, Czech Republic (April 1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Krzysztof Simiński
    • 1
  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations