Advertisement

Counterexample Generation for Discrete-Time Markov Chains Using Bounded Model Checking

  • Ralf Wimmer
  • Bettina Braitling
  • Bernd Becker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5403)

Abstract

Since its introduction in 1999, bounded model checking has gained industrial relevance for detecting errors in digital and hybrid systems. One of the main reasons for this is that it always provides a counterexample when an erroneous execution trace is found. Such a counterexample can guide the designer while debugging the system.

In this paper we are investigating how bounded model checking can be applied to generate counterexamples for a different kind of model—namely discrete-time Markov chains. Since in this case counterexamples in general do not consist of a single path to a safety-critical state, but of a potentially large set of paths, novel optimization techniques like loop-detection are applied not only to speed-up the counterexample computation, but also to reduce the size of the counterexamples significantly. We report on some experiments which demonstrate the practical applicability of our method.

Keywords

Model Check Conjunctive Normal Form Binary Decision Diagram Kripke Structure Satisfying Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers 35(8), 677–691 (1986)CrossRefzbMATHGoogle Scholar
  2. 2.
    Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods in System Design 19(1), 7–34 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Wimmer, R., Kortus, A., Herbstritt, M., Becker, B.: Probabilistic model checking and reliability of results. In: 11th IEEE Int’l Workshop on Design and Diagnostics of Electronic Circuits and Systems (DDECS), pp. 207–212. IEEE CS, Los Alamitos (2008)Google Scholar
  4. 4.
    Hojati, R., Brayton, R.K., Kurshan, R.P.: BDD-based debugging of design using language containment and fair CTL. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 41–58. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  5. 5.
    Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of counterexamples and witnesses in symbolic model checking. In: 32nd Design Automation Conference, pp. 427–432 (1995)Google Scholar
  6. 6.
    Clarke, E.M., Jha, S., Lu, Y., Veith, H.: Tree-like counterexamples in model checking. In: Symposium on Logic in Computer Science (LICS), pp. 19–29. IEEE CS, Los Alamitos (2002)Google Scholar
  7. 7.
    Gurfinkel, A., Chechik, M.: Proof-like counter-examples. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 160–175. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Aljazzar, H., Hermanns, H., Leue, S.: Counterexamples for timed probabilistic reachability. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 177–195. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Aljazzar, H., Leue, S.: Extended directed search for probabilistic timed reachability. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 33–51. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Han, T., Katoen, J.-P.: Counterexamples in probabilistic model checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 72–86. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Damman, B., Han, T., Katoen, J.P.: Regular expressions for PCTL counterexamples. In: Rubino, G. (ed.) 5th QEST, Saint-Malo, France, pp. 179–188. IEEE CS, Los Alamitos (2008)Google Scholar
  12. 12.
    Andrés, M.E., D’Argenio, P., van Rossum, P.: Significant diagnostic counterexamples in probabilistic model checking. In: Haifa Verification Conference. LNCS. Springer, Heidelberg (2008)Google Scholar
  13. 13.
    Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5), 512–535 (1994)CrossRefzbMATHGoogle Scholar
  15. 15.
    Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in Constructive Mathematics and Mathematical Logic, Part 2, 115–125 (1970)Google Scholar
  16. 16.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Fujita, M., McGeer, P.C., Yang, J.C.Y.: Multiterminal binary decision diagrams: An efficient data structure for matrix representation. Formal Methods in System Design 10(2/3), 149–169 (1997)CrossRefGoogle Scholar
  18. 18.
    Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In: IEEE/ACM Int’l Conf. on Computer Aided Design (ICCAD), pp. 42–47 (1993)Google Scholar
  19. 19.
    Somenzi, F.: CUDD: CU Decision Diagram Package Release 2.4.1. University of Colorado at Boulder (2005)Google Scholar
  20. 20.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and Computation 88(1), 60–87 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Communications of the ACM 28(6), 637–647 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Norman, G., Shmatikov, V.: Analysis of probabilistic contract signing. Journal of Computer Security 14(6), 561–589 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ralf Wimmer
    • 1
  • Bettina Braitling
    • 1
  • Bernd Becker
    • 1
  1. 1.Chair of Computer ArchitectureAlbert-Ludwigs-University Freiburg im BreisgauGermany

Personalised recommendations