Advertisement

Spatio-temporal Analysis of Unstained Cells In-vitro

  • Nico Scherf
  • Jens-Peer Kuska
  • Ulf-Dietrich Braumann
  • Katja Franke
  • Tilo Pompe
  • Ingo Röder
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Abstract

The tracking of individual cells in time-lapse microscopy facilitates the assessment of certain characteristics of different cell types. Since manual tracking of an adequate number of cells over a considerable number of frames is tedious and sometimes not feasible, there is a vital interest in automated methods. We present a rather minimalistic approach for the tracking of unstained cells in cell culture assays. The proposed approach comprises background subtraction, an object detection method based on discrete geometrical feature analysis together with a validation of the resulting graph-structures. The main advantage of this approach lies in its computational efficiency.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schroeder T. Imaging stem cell driven mammalian regeneration. Nature. 2008;453:345–351.CrossRefGoogle Scholar
  2. 2.
    Meijering E, Smal I, Dzyubachyk O, et al. Microscopic Image Processing; 2008.Google Scholar
  3. 3.
    Yilmaz A, Li X, Shah M. Object contour tracking using level sets. Procs ACCV. 2004.Google Scholar
  4. 4.
    Li K, Miller E, Weiss L, et al. Online tracking of migrating and proliferating cells imaged with phase-contrast microscopy. Procs CVPRW. 2006; p. 65–72.Google Scholar
  5. 5.
    Nath SK, Bunyak F, Palaniappan K. Robust tracking of migrating cells using four-color level set segmentation. Lect Notes Comput Sci. 2006;4179:920–932.CrossRefGoogle Scholar
  6. 6.
    Padfield DR,, Rittscher J, Sebastian T, et al. Spatio-temporal cell cycle analysis using 3D level set segmentation of unstained nuclei in line scan confocal fluorescence images. Procs ISBI. 2006; p. 1036–1039.Google Scholar
  7. 7.
    Al-Kofahi O, Radke R.J, Goderie SK, et al. Automated cell lineage construction: A rapid method to analyze clonal development established with murine neural progenitor cells. Cell Cycle. 2006;5(3):327–335.Google Scholar
  8. 8.
    Braumann U, Franke H, Hengstler J, et al. Graph-based quantification of astrocytes. Procs BVM. 2006; p. 379–383.Google Scholar
  9. 9.
    Godinez W, Lampe M, Wörz S, et al. Probabilistic tracking of virus particles in fluorescence microscopy image sequences. Procs BVM. 2008; p. 448–452.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nico Scherf
    • 1
    • 2
  • Jens-Peer Kuska
    • 3
  • Ulf-Dietrich Braumann
    • 2
  • Katja Franke
    • 4
  • Tilo Pompe
    • 4
  • Ingo Röder
    • 1
  1. 1.Inst. f. Medizinische Informatik, Statistik u. EpidemiologieUniversität LeipzigDeutschland
  2. 2.Translationszentrum für Regenerative MedizinUniversität LeipzigDeutschland
  3. 3.Interdisziplinäres Zentrum für BioinformatikUniversität LeipzigDeutschland
  4. 4.Leibniz-Inst. f. PolymerforschungMax-Bergmann-Zentr. f. BiomaterialienDresden

Personalised recommendations